首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The strong convergence of Euler approximations of stochastic delay differential equations is proved under general conditions. The assumptions on drift and diffusion coefficients have been relaxed to include polynomial growth and only continuity in the arguments corresponding to delays. Furthermore, the rate of convergence is obtained under one-sided and polynomial Lipschitz conditions. Finally, our findings are demonstrated with the help of numerical simulations.  相似文献   

2.
In this paper, we consider the stochastic differential equations with piecewise continuous arguments (SDEPCAs) in which the drift coefficient satisfies the generalized one-sided Lipschitz condition and the diffusion coefficient satisfies the linear growth condition. Since the delay term $t-[t]$ of SDEPCAs is not continuous and differentiable, the variable substitution method is not suitable. To overcome this difficulty, we adopt new techniques to prove the boundedness of the exact solution and the numerical solution. It is proved that the truncated Euler-Maruyama method is strongly convergent to SDEPCAs in the sense of $L^{\bar{q}}(\bar{q}\ge 2)$. We obtain the convergence order with some additional conditions. An example is presented to illustrate the analytical theory.  相似文献   

3.
In this paper, we consider the Euler-Maruyama method for a class of stochastic Volterra integral equations (SVIEs). It is known that the strong convergence order of the Euler-Maruyama method is $\frac12$. However, the strong superconvergence order $1$ can be obtained for a class of SVIEs if the kernels $\sigma_{i}(t, t) = 0$ for $i=1$ and $2$; otherwise, the strong convergence order is $\frac12$. Moreover, the theoretical results are illustrated by some numerical examples.  相似文献   

4.
This paper aims to investigate the numerical approximation of a general second order parabolic stochastic partial differential equation(SPDE) driven by multiplicative and additive noise. Our main interest is on such SPDEs where the nonlinear part is stronger than the linear part, usually called stochastic dominated transport equations. Most standard numerical schemes lose their good stability properties on such equations, including the current linear implicit Euler method. We discretize the SPDE in space by the finite element method and propose a novel scheme called stochastic Rosenbrock-type scheme for temporal discretization. Our scheme is based on the local linearization of the semi-discrete problem obtained after space discretization and is more appropriate for such equations. We provide a strong convergence of the new fully discrete scheme toward the exact solution for multiplicative and additive noise and obtain optimal rates of convergence. Numerical experiments to sustain our theoretical results are provided.  相似文献   

5.
In this paper, we deal with the strong convergence of numerical methods for stochastic differential equations with piecewise continuous arguments (SEPCAs) with at most polynomially growing drift coefficients and global Lipschitz continuous diffusion coefficients. An explicit and time-saving tamed Euler method is used to solve this type of SEPCAs. We show that the tamed Euler method is bounded in pth moment. And then the convergence of the tamed Euler method is proved. Moreover, the convergence order is one-half. Several numerical simulations are shown to verify the convergence of this method.  相似文献   

6.
The aim of this paper is to investigate the pathwise numerical solution of semilinear parabolic stochastic partial differential equations (SPDEs) with colored noise instead of the usual space–time white noise. We estimate the numerical solution in the L topology by a method that takes advantages of the smoothing effect of the dominant linear operator. We consider the case the covariance operator of the forcing does not necessarily commute with the linear operator of the SPDE because of the fact that the Brownian motions are not necessarily independent. We show convergence of this method, and numerical examples give insight into the reliability of the theoretical study. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
《随机分析与应用》2013,31(6):1385-1420
Abstract

The purpose of this paper is to transform a nonlinear stochastic partial differential equation of parabolic type with multiplicative noise into a random partial differential equation by using a bijective random process. A stationary conjugation is constructed, which is of interest for asymptotic problems. The conjugation is used here to prove the existence of the stochastic flow, the perfect cocycle property and the existence of the random attractor, all nontrivial properties in the case of multiplicative noise.  相似文献   

8.
In this paper, we develop the truncated Euler-Maruyama (EM) method for stochastic differential equations with piecewise continuous arguments (SDEPCAs), and consider the strong convergence theory under the local Lipschitz condition plus the Khasminskii-type condition. The order of convergence is obtained. Moreover, we show that the truncated EM method can preserve the exponential mean square stability of SDEPCAs. Numerical examples are provided to support our conclusions.  相似文献   

9.
It is well known that the weak Euler approximation of a stochastic differential equation has order one, provided the coefficients of the equation are sufficiently smooth. We prove that the order of the approximation is still one in the case where the drift coefficient is a Lipschitz function and the diffusion coefficient is constant.  相似文献   

10.
A two-grid finite element approximation is studied in the fully discrete scheme obtained by discretizing in both space and time for a nonlinear hyperbolic equation. The main idea of two-grid methods is to use a coarse-grid space ($S_H$) to produce a rough approximation for the solution of nonlinear hyperbolic problems and then use it as the initial guess on the fine-grid space ($S_h$). Error estimates are presented in $H^1$-norm, which show that two-grid methods can achieve the optimal convergence order as long as the two different girds satisfy $h$ = $\mathcal{O}$($H^2$). With the proposed techniques, we can obtain the same accuracy as standard finite element methods, and also save lots of time in calculation. Theoretical analyses and numerical examples are presented to confirm the methods.  相似文献   

11.
In this paper, we consider a class of optimal control problems involving linear hyperbolic partial differential equations with Darboux boundary conditions. A strong variational algorithm has been obtained for solving this class of optimal control problems in a previous paper by the third and the first authors. It was also shown that anyL accumulation points of control sequences generated by the algorithm satisfy a necessary condition for optimality. Since such accumulation points need not exist, it is shown in this paper that the control sequences generated by the algorithm always have accumulation points in the sense of control measure, and these accumulation points satisfy a necessary condition for optimality for the corresponding relaxed control problems.This work was partially supported by the Australian Research Grant Committee, and was done during the period when Z. S. Wu and K. G. Choo were Honorary Visiting Fellows in the School of Mathematics at the University of New South Wales, Australia.  相似文献   

12.
In this article, we first transform the telegraph equation into a system of partial differential equations. Then, we apply the variational iteration method to compute an approximate solution for the telegraph equation. Convergence of the proposed method is also discussed. Finally, some numerical examples are given to show the effectiveness of the proposed method. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1442–1455, 2011  相似文献   

13.
Let k(y) > 0, 𝓁(y) > 0 for y > 0, k(0) = 𝓁(0) = 0 and limy → 0k(y)/𝓁(y) exists; then the equation L(u) ≔ k(y)uxx – ∂y(𝓁(y)uy) + a(x, y)ux = f(x, y, u) is strictly hyperbolic for y > 0 and its order degenerates on the line y = 0. Consider the boundary value problem Lu = f(x, y, u) in G, u|AC = 0, where G is a simply connected domain in ℝ2 with piecewise smooth boundary ∂G = ABACBC; AB = {(x, 0) : 0 ≤ x ≤ 1}, AC : x = F(y) = ∫y0(k(t)/𝓁(t))1/2dt and BC : x = 1 – F(y) are characteristic curves. Existence of generalized solution is obtained by a finite element method, provided f(x, y, u) satisfies Carathéodory condition and |f(x, y, u)| ≤ Q(x, y) + b|u| with QL2(G), b = const > 0. It is shown also that each generalized solution is a strong solution, and that fact is used to prove uniqueness under the additional assumption |f(x, y, u1) – f(x, y, u2| ≤ C|u1u2|, where C = const > 0.  相似文献   

14.
15.
This paper discusses convergence and complexity of arbitrary,but fixed,order adaptive mixed element methods for the Poisson equation in two and three dimensions.The two main ingredients in the analysis,namely the quasi-orthogonality and the discrete reliability,are achieved by use of a discrete Helmholtz decomposition and a discrete inf-sup condition.The adaptive algorithms are shown to be contractive for the sum of the error of flux in L2-norm and the scaled error estimator after each step of mesh refinement and to be quasi-optimal with respect to the number of elements of underlying partitions.The methods do not require a separate treatment for the data oscillation.  相似文献   

16.
We consider a time discretization of incompressible Navier-Stokes equations with spatial periodic boundary conditions and additive noise in the vorticity-velocity formulation. The approximation is based on freezing the velocity on time subintervals resulting in a linear stochastic parabolic equation for vorticity. At each time step, the velocity is expressed via vorticity using a formula corresponding to the Biot-Savart-type law. We prove the first mean-square convergence order of the vorticity approximation.  相似文献   

17.
18.
We study the semidiscrete Galerkin approximation of a stochastic parabolic partial differential equation forced by an additive space-time noise. The discretization in space is done by a piecewise linear finite element method. The space-time noise is approximated by using the generalized L2 projection operator. Optimal strong convergence error estimates in the L2 and norms with respect to the spatial variable are obtained. The proof is based on appropriate nonsmooth data error estimates for the corresponding deterministic parabolic problem. The error estimates are applicable in the multi-dimensional case. AMS subject classification (2000) 65M, 60H15, 65C30, 65M65.Received April 2004. Revised September 2004. Communicated by Anders Szepessy.  相似文献   

19.
This paper presents a Martingale regularization method for the stochastic Navier-Stokes equations with additive noise. The original system is split into two equivalent parts, the linear stochastic Stokes equations with Martingale solution and the stochastic modified Navier-Stokes equations with relatively-higher regularities. Meanwhile, a fractional Laplace operator is introduced to regularize the noise term. The stability and convergence of numerical scheme for the pathwise modified Navier-Stokes equations are proved.The comparisons of non-regularized and regularized noises for the Navier-Stokes system are numerically presented to further demonstrate the efficiency of our numerical scheme.  相似文献   

20.
A finite element variational multiscale method based on two local Gauss integrations is applied to solve numerically the time‐dependent incompressible Navier–Stokes equations. A significant feature of the method is that the definition of the stabilization term is derived via two local Guass integrations at element level, making it more efficient than the usual projection‐based variational multiscale methods. It is computationally cheap and gives an accurate approximation to the quantities sought. Based on backward Euler and Crank–Nicolson schemes for temporal discretization, we derive error bounds of the fully discrete solution which are first and second order in time, respectively. Numerical tests are also given to verify the theoretical predictions and demonstrate the effectiveness of the proposed method. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号