首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 52 毫秒
1.
郑劼恒  蒋明  郭芮  李国栋 《计算力学学报》2015,32(3):418-422,428
针对顺序输送水力瞬变中输送介质不连续的情况,提出采用有限体积法取代传统的特征线法进行求解,以减少插值误差。首先得到水击基本方程基于压力-流速的非守恒有限体积离散格式,通过Rieman求解器得到控制体界面的Rieman解。采用MUSCL-Hancock Primitive方法进行界面数值重构与时间推进,构建时空二阶精度的TVD格式。边界的处理采用Rieman不变量与构造虚拟边界节点相结合的方法,使其与整体精度保持一致。数值计算与实验对比,证明了本文算法能有效抑制非物理振荡,具有精度高、鲁棒性好的特点。  相似文献   

2.
应用特征线差分法求解耦合瞬变问题时存在难以避免的多波插值问题,会引入较大的插值误差。为了解决此问题,本文提出了一种求解管道耦合水力瞬变模型的Godunov计算格式。首先基于有限体积法对模型进行数值离散,然后采用时空均为二阶精度的三步MUSCL-Hancock方法计算单元界面上的数值通量,同时引入斜率限制器函数来抑制虚假的数值振荡。在计算边界单元时,采用Rankine-Hugoniot条件与边界条件相结合的方法建立边界方程,有效降低了计算的复杂程度。实验与仿真对比表明:本文的计算结果与实验结果吻合较好,激波捕捉准确且无虚假的数值振荡,进而证明了该方法的可行性和有效性。  相似文献   

3.
同位网格摄动有限体积格式求解浮力驱动方腔流   总被引:2,自引:1,他引:1  
代民果  高智 《力学学报》2006,38(6):733-740
利用对流扩散方程的摄动有限体积格式,在Rayleigh数从10$^{3}$ 到10$^{8}$的范围内对浮力驱动方腔流动问题作了数值模拟. 对流扩散方程的摄动 有限体积格式具有一阶迎风格式的简洁形式,使用相同的基点,重构近似精度高,特别是两 相邻控制体中心到公共界面的距离相等或不相等,PFV格式公式相同等优点. 在数值模拟中, 无论均匀网格还是非均匀网格均获得与DSC方法、自适应有限元法、多重网格法等Benchmark 解相符较好的数值结果,证明UPFV格式对高Rayleigh数对流传热问题的适用性和有效性.  相似文献   

4.
利用NND有限差分格式,发展了一种新的完全隐式的有限体积数值方法,以求解与时间相关的N-S方程.对通过单元体界面的无粘流和粘性流通量均作隐式处理.对绕流钝锥体和不同攻角的气动辅助实验飞行器的高超声速粘性流和化学反应流获得了定常数值解.对流加热率和流场电子密度的计算值与实验数据进行了比较,符合较好,证实了本方法的精确性.  相似文献   

5.
王宁  周领  李赟杰  潘天文 《力学学报》2022,54(7):1952-1960
基于有限体积法二阶Godunov求解格式对黏弹性输水管道中水柱分离弥合现象进行建模和模拟研究. 在传统的弹性管道模型基础上考虑管道黏弹性效应的影响. 在瞬变流控制方程中引入管道黏弹性项和动态摩阻项, 采用有限体积法进行求解, 考虑压力修正系数来模拟自由气体对计算单元的影响, 同时为避免数值模拟结果产生虚假震荡引入斜率限制器MINMOD函数; 通过虚拟单元法进行边界构建, 实现了计算区域的统一计算. 将所建模型计算结果与已有模型结果、试验结果进行对比, 并对影响模型的各参数进行敏感性分析. 结果表明, 本文模型能够准确模拟出纯水锤、水柱分离弥合水锤两种情况下的瞬态压力变化, 均能与试验数据高度吻合; 与传统的特征线方法相比, 当库朗数Cr小于1时, 有限体积法二阶Godunov格式计算结果更准确、稳定; 在压力波动的衰减过程中, 黏弹性效应相比于管道摩阻起主导作用; 与弹性管道模型相比, 考虑管道黏弹性效应后可显著提高模拟结果的准确性, 尤其是压力波峰值的相对误差明显降低.   相似文献   

6.
输水系统管道的泄漏影响瞬变水击波波形的畸变和衰减特性,对泄漏的定位和定量是泄漏辨识研究的重要环节.考虑水力瞬变中非恒定摩阻的影响,将泄漏参数反映在建立的管道瞬变流时域数学模型中,给出离散网格和求解方法,分析不同泄漏参数对瞬变水击波的影响,用遗传算法结合瞬变流时域模型的特征线法最小化管道测点压力实测和计算响应值的均方误差来辨识泄漏参数,其中实测信号首先经过预滤波和小波去噪处理.通过模型试验对瞬变流数学模型和泄漏反问题分析模型作了率定和验证,结果表明此法能有效的辨识出小泄漏参数,并且检测信号主动,阀门扰动可操作性强.  相似文献   

7.
求解对流扩散方程的一种高效的有限体积法   总被引:1,自引:0,他引:1  
考虑无结构三角网格上求解对流扩散方程的有限体积法.引入一种梯度函数的计算方法,将现有方法中计算解变量在网格单元中心和网格单元边界的梯度的两个独立过程改造成一个过程来完成,发展了一种求解对流扩散方程的高效的有限体积法.数值实验结果表明,该方法完全达到了已有方法同样的精度,而在计算速度上有明显的提高.  相似文献   

8.
本文研究的碳酸盐岩油藏储集体属于缝洞型多孔介质.这类缝洞型多孔介质由裂缝、溶蚀孔洞和低孔隙度低渗透率的基岩组成.裂缝是空隙流体流动的主要通道;溶蚀孔洞大小从几厘米到数米不等,渗透率和孔隙度都很高,是流体主要的储集空间.由于缝洞型多孔介质空隙空间的复杂性和强非均质性,数值计算中基本控制方程的空间离散应采用非结构化网格的计算模型.本文采用有限体积法模拟缝洞型多孔介质中多相流体的流动,并给出了相应的单元中心格式有限体积法的计算公式.裂缝介质和溶洞介质中单元间多相流体的流动考虑为高速非达西流,其质量通量采用Forchheimer定律计算.非线性方程的离散选取全隐式格式,并采用Newton-Raphson迭代进行求解.通过两个二维模型注水驱油的数值模拟,验证了本文方法的有效性.  相似文献   

9.
齐进  田保林  王双虎 《力学学报》2011,43(4):660-664,672,671
针对守恒形式的欧拉方程组, 构造了一种结合Roe格式的守恒型有限体 积形式的半拉氏方法. 通过发展一种基于Roe特征速度的拉氏质点回溯方法, 由此来计算 半点的流量并作为边界通量的近似, 使得这种半拉氏方法在时空离散上达到二阶精度, 并 且保证了守恒性. 其中回溯点处物理量采用本质无振荡格式(ENO)方法进行插值重 构得到, 不需要增加人工黏性且避免了有限体积多矩半拉氏方法中限制器选择的问题, 又能够达到时空的高阶精度. 方法简便, 易于实现, 兼具拉氏方法和欧拉方法的优点. 一维和二维数值算例表明, 此方法对激波和接触间断都取得了满意的模拟效果, 可用于可压缩复杂流动问题的计算.  相似文献   

10.
局部冲刷的三维数值模拟可预测水力冲刷的破坏程度和破坏机制,进而提供更加合理的工程措施以减轻或避免局部冲刷造成的工程破坏。基于有限体积法和非结构化的计算网格构建了以水动力学模型、泥沙冲淤和河床变形方程为基础的三维局部冲刷数值模型。水动力学模型中的湍流模型为剪切应力SST k-ω输运模型,泥沙冲淤以底床切应力大小和分布为基础,水沙模型的耦合采用单向弱耦合方式。首先,通过ANSYS-FLUENT软件数值计算水动力学模型后,将水力特性数据单向传递至泥沙模块,并应用UDF函数二次开发实现泥沙模型的数值计算。利用动网格技术重构因河床地形更新引起的变形网格。与动床圆柱冲刷和丁坝局部冲刷的试验结果进行比较,验证了局部冲刷数值模型的可靠性。从平衡冲深时的冲刷深度和冲坑内水流特性等结果的对比可以看出,该数值模型成功地模拟出最终冲刷地形和形态,并能捕捉不同时刻的三维地形变化。根据数值模型的建立及应用结果分析主要得到以下结论,以切应力观点为基础开发该模型时,具有简易性和较强的可靠性;单元体泥沙通量的重构和床面坡度等因素均影响模型的精度;FLUENT软件提供的动网格技术能较好重构小变形网格,但是重构因地形变化引起的大变形网格时略显不足。  相似文献   

11.
Reynolds-averaged Navier-Stokes simulations based on second-order numerical methods are widely used by commercial codes and work as dominating tools for most industrial applications. They, however, suffer from limitations in accurate and reliable predictions of skin-friction drag and aerodynamic heating, as well as in simulations of complex flows such as large-scale separation and transition. A remedy for this is the development of high-order schemes, by which numerically induced dissipation and dispersion errors of low-order schemes can be effectively reduced. Weighted compact nonlinear schemes (WCNSs) are a family of high-resolution nonlinear shock-capturing methods. A stencil-selection procedure is introduced in the proposed work with an aim to improve the nonlinear weight of the third-order WCNS. By using the approximate dispersion relation analysis, it is demonstrated that the new scheme has reduced dissipation and dispersion errors, compared with WCNSs using two typical nonlinear weights. Improvements are also achieved by the new scheme in numerical tests such as the double Mach reflection problem and the Rayleigh-Taylor instability simulation, which are characterized by strong shock discontinuities and rich small scales, respectively. The new scheme is therefore highly favored in the simulation of flow problems involving strong discontinuities and multiscales phenomena.  相似文献   

12.
Consideration is given in this paper to the numerical solution of the transient two‐phase flow in rigid pipelines. The governing equations for such flows are two coupled, non‐linear, hyperbolic, partial differential equations with pressure dependent coefficients. The fluid pressure and velocity are considered as two principle dependent variables. The fluid is a homogeneous gas–liquid mixture for which the density is defined by an expression averaging the two‐component densities where a polytropic process of the gaseous phase is admitted. Instead of the void fraction, which varies with the pressure, the gas–fluid mass ratio (or the quality) is assumed to be constant, and is used in the mathematical formulation. The problem has been solved by the method of non‐linear characteristics and the finite difference conservative scheme. To verify their validity, the computed results of the two numerical techniques are compared for different values of the quality, in the case where the liquid compressibility and the pipe wall elasticity are neglected. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

13.
Based on the finite volume method, three methods for rotational region treatment were presented and validated by simulating two-dimensional accelerating rotational flows. Separate transient incompressible flows induced by cross-shaped blades during starting process were simulated using the dynamic mesh, sliding mesh and dynamic reference frame methods. The computing performance and stability of the three methods were evaluated by comparing numerical results, and the transient characteristics of the accelerating rotational flow were analysed numerically. Results showed that the starting process affected the flow structure and transient characteristics of the accelerating rotational flows. The sliding mesh method showed higher computational efficiency and accuracy compared with other methods, and could easily be extended to solve three-dimensional transient flows in hydraulic machineries under transient operations, such as start-up and shutdown.  相似文献   

14.
The optimal transient growth process of perturbations driven by the pressure gradient is studied in a turbulent pipe flow. A new computational method is proposed, based on the projection operators which project the governing equations onto the subspace spanned by the radial vorticity and radial velocity. The method is validated by comparing with the previous studies. Two peaks of the maximum transient growth amplification curve are found at different Reynolds numbers ranging from 20 000 to 250 000. The optimal flow structures are obtained and compared with the experiments and DNS results. The location of the outer peak is at the azimuthal wave number n=1, while the location of the inner peak is varying with the Reynolds number. It is observed that the velocity streaks in the buffer layer with a spacing of 100δv are the most amplified flow structures. Finally, we consider the optimal transient growth time and its dependence on the azimuthal wave length. It shows a self-similar behavior for perturbations of different scales in the optimal transient growth process.  相似文献   

15.
We develop an efficient, parallel, gas-kinetic solver for computing both continuum and non-continuum flows over non-Cartesian geometries by utilising the unified gas kinetic scheme (UGKS). UGKS, however, requires the computationally expensive update of a six-dimensional phase space at each time step restricting its application to canonical, laminar problems and simple geometries. In this paper, we demonstrate that the applications of UGKS can be increased by parallelising it and combining it with a recently developed, Cartesian grid method (UGKS-CGM). We demonstrate that our Cartesian grid methodology as well as UGKS parallelization perform and scale well on a range of numerical test cases even for a very large number of cores. Finally, we demonstrate that the solver accurately computes canonical turbulence at low Knudsen numbers. These results demonstrate that the parallelised UGKS code can be utilised to effectively study the non-equilibrium effects of rarefaction on laminar and turbulent non-continuum flows.  相似文献   

16.
A flow model is presented for predicting a hydraulic jump in a straight open channel. The model is based on the general 2D shallow water equations in strong conservation form, without artificial viscosity, which is usually incorporated into the flow equations to capture a hydraulic jump. The equations are discretised using the finite volume method. The results are compared with experimental data and available numerical results, and have shown that the present model can provide good results. The model is simple and easy to implement. To demonstrate the potential application of the model, several hydraulic jumps occurring in different situations are simulated, and the predictions are in good agreement with standard solution for open channel hydraulics. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
The present work is devoted to the numerical approximation of a system which arises when modelling a two‐phase flow in a pipeline. Two particular difficulties are of special interest, the non‐conservativity and the weakly hyperbolicity of this system. Some elementary waves are characterized and a relaxation system, unconditionally hyperbolic, is proposed. The stability criteria of the resulting relaxation method are achieved by a Chapmann–Enskog‐like expansion. A numerical scheme based on the relaxation system is proposed and computations are performed on a shock tube. Validation is performed by comparison with the exact solution and also to the solution from a modified HLL scheme. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we describe an implicit hybrid finite volume (FV)/element (FE) incompressible Navier–Stokes solver for turbulent flows based on the Spalart–Allmaras detached eddy simulation (SA‐DES). The hybrid FV/FE solver is based on the segregated pressure correction or projection method. The intermediate velocity field is first obtained by solving the original momentum equations with the matrix‐free implicit cell‐centered FV method. The pressure Poisson equation is solved by the node‐based Galerkin FE method for an auxiliary variable. The auxiliary variable is closely related to the real pressure and is used to update the velocity field and the pressure field. We store the velocity components at cell centers and the auxiliary variable at vertices, making the current solver a staggered‐mesh scheme. The SA‐DES turbulence equation is solved after the velocity and the pressure fields have been updated at the end of each time step. The same matrix‐free FV method as the one used for momentum equations is used to solve the turbulence equation. The turbulence equation provides the eddy viscosity, which is added to the molecular viscosity when solving the momentum equation. In our implementation, we focus on the accuracy, efficiency and robustness of the SA‐DES model in a hybrid flow solver. This paper will address important implementation issues for high‐Reynolds number flows where highly stretched elements are typically used. In addition, some aspects of implementing the SA‐DES model will be described to ensure the robustness of the turbulence model. Several numerical examples including a turbulent flow past a flat plate and a high‐Reynolds number flow around a high angle‐of‐attack NACA0015 airfoil will be presented to demonstrate the accuracy and efficiency of our current implementation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
A local block refinement procedure for the efficient computation of transient incompressible flows with heat transfer is presented. The procedure uses patched structured grids for the blockwise refinement and a parallel multigrid finite volume method with colocated primitive variables to solve the Navier‐Stokes equations. No restriction is imposed on the value of the refinement rate and non‐integer rates may also be used. The procedure is analysed with respect to its sensitivity to the refinement rate and to the corresponding accuracy. Several applications exemplify the advantages of the method in comparison with a common block structured grid approach. The results show that it is possible to achieve an improvement in accuracy with simultaneous significant savings in computing time and memory requirements. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号