首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study is to investigate the existence of infinitely many weak solutions for the $(p(x), q(x))$-Kirchhoff Neumann problem described by the following equation : \begin{equation*} \left\{\begin{array}{ll} -\left(a_{1}+a_{2}\int_{\Omega}\frac{1}{p(x)}|\nabla u|^{p(x)}dx\right)\Delta_{p(\cdot)}u-\left(b_{1}+b_{2}\int_{\Omega}\frac{1}{q(x)}|\nabla u|^{q(x)}dx\right)\Delta_{q(\cdot)}u\+\lambda(x)\Big(|u|^{p(x)-2} u+|u|^{q(x)-2} u\Big)= f_1(x,u)+f_2(x,u) &\mbox{ in } \Omega, \\frac{\partial u}{\partial \nu} =0 \quad &\mbox{on} \quad \partial\Omega.\end{array}\right. \end{equation*} By employing a critical point theorem proposed by B. Ricceri, which stems from a more comprehensive variational principle, we have successfully established the existence of infinitely many weak solutions for the aforementioned problem.  相似文献   

2.
In this paper, we have studied the separation for the biharmonic Laplace-Beltrami differential operator\begin{equation*}Au(x)=-\Delta \Delta u(x)+V(x)u(x),\end{equation*}for all $x\in R^{n}$, in the Hilbert space $H=L_{2}(R^{n},H_{1})$ with the operator potential $V(x)\in C^{1}(R^{n},L(H_{1}))$, where $L(H_{1})$ is the space of all bounded linear operators on the Hilbert space $H_{1}$, while $\Delta \Delta u$\ is the biharmonic differential operator and\begin{equation*}\Delta u{=-}\sum_{i,j=1}^{n}\frac{1}{\sqrt{\det g}}\frac{\partial }{{\partial x_{i}}}\left[ \sqrt{\det g}g^{-1}(x)\frac{\partial u}{{\partial x}_{j}}\right]\end{equation*}is the Laplace-Beltrami differential operator in $R^{n}$. Here $g(x)=(g_{ij}(x))$ is the Riemannian matrix, while $g^{-1}(x)$ is the inverse of the matrix $g(x)$. Moreover, we have studied the existence and uniqueness Theorem for the solution of the non-homogeneous biharmonic Laplace-Beltrami differential equation $Au=-\Delta \Delta u+V(x)u(x)=f(x)$ in the Hilbert space $H$ where $f(x)\in H$ as an application of the separation approach.  相似文献   

3.
We study the global in time existence of small classical solutions to the nonlinear Schrödinger equation with quadratic interactions of derivative type in two space dimensions $\left\{\begin{array}{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&;t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&;x\in {\bf R}^{2}, \end{array}\right.\quad\quad\quad\quad\quad\quad (0.1)$ where the quadratic nonlinearity has the form ${\mathcal{N}( \nabla u,\nabla v) =\sum_{k,l=1,2}\lambda _{kl} (\partial _{k}u) ( \partial _{l}v) }We study the global in time existence of small classical solutions to the nonlinear Schr?dinger equation with quadratic interactions of derivative type in two space dimensions
$\left\{{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&x\in {\bf R}^{2}, \right.\quad\quad\quad\quad\quad\quad (0.1)$\left\{\begin{array}{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&x\in {\bf R}^{2}, \end{array}\right.\quad\quad\quad\quad\quad\quad (0.1)  相似文献   

4.
The paper proves the nonexistence of the solution for the following Cauchy problem\begin{align*}\begin{cases}u_{t} ={\rm div}\left(\left|\nabla u^{m} \right|^{p-2} \nabla u^{m} \right)-\lambda \; u^{q},&\qquad \left(x,t\right)\in S_{T} ={\mathbb{R}}^N \times \left(0,T\right), \\u\left(x,\; 0\right)=\delta \left(x\right), &\qquad x\in {\mathbb{R}}^,\end{cases}\end{align*}under some conditions on \textit{m,p,q},$\lambda$, where $\delta $ is Dirac function.  相似文献   

5.
Consider the Kirchhoff type equation \begin{equation}\label{eq0.1}-\left(a+b\int_{\mathbb{R}^{N}}|\nabla u|^{2}\,dx\right) \Delta u=\left(\frac{1}{|x|^\mu}*F(u)\right)f(u)\ \ \mbox{in}\ \mathbb{R}^N, \ \ u\in D^{1,2}(\mathbb{R}^N), ~~~~~~(0.1)\end{equation}where $a>0$, $b\geq0$, $0<\mu<\min\{N, 4\}$ with $N\geq 3$, $f: \mathbb{R}\to\mathbb{R}$ is a continuous function and $F(u)=\int_0^u f(t)\,dt$. Under some general assumptions on $f$, we establish the existence of a nontrivial spherically symmetric solution for problem (0.1). The proof is mainly based on mountain pass approach and a scaling technique introduced by Jeanjean.  相似文献   

6.
Stochastic homogenization (with multiple fine scales) is studied for a class of nonlinear monotone eigenvalue problems. More specifically, we are interested in the asymptotic behaviour of a sequence of realizations of the form
$ - div\left( {a\left( {T_1 \left( {\frac{x} {{\varepsilon _1 }}} \right)\omega _1 ,T_2 \left( {\frac{x} {{\varepsilon _2 }}} \right)\omega _2 ,\nabla u_\varepsilon ^\omega } \right)} \right) = \lambda _\varepsilon ^\omega \mathcal{C}\left( {u_\varepsilon ^\omega } \right) $ - div\left( {a\left( {T_1 \left( {\frac{x} {{\varepsilon _1 }}} \right)\omega _1 ,T_2 \left( {\frac{x} {{\varepsilon _2 }}} \right)\omega _2 ,\nabla u_\varepsilon ^\omega } \right)} \right) = \lambda _\varepsilon ^\omega \mathcal{C}\left( {u_\varepsilon ^\omega } \right)   相似文献   

7.
We provide two regularity criteria for the weak solutions of the 3D micropolar fluid equations, the first one in terms of one directional derivative of the velocity, i.e., $\partial_{3}u$, while the second one is is in terms of the behavior of the direction of the velocity $\frac{u}{|u|}$. More precisely, we prove that if \begin{equation*} \partial_{3}u \in L^{\beta}(0,T;L^{\alpha}(\mathbb{R}^{3}))\quad\text{ with }\frac{2}{\beta}+\frac{3}{\alpha}\leq 1+\frac{1}{\alpha}, 2&lt; \alpha \leq\infty, 2\leq\beta&lt; \infty; \end{equation*} or \begin{equation*} \operatorname{div}\left(\frac{u}{|u|}\right)\in L^{\frac{4}{1-2r}}(0,T;\dot{X}_{r}(\mathbb{R}^{3}))\quad \text{ with } 0\leq r&lt; \frac{1}{2}, \end{equation*} then the weak solution $(u(x,t),\omega(x,t))$ is regular on $\mathbb{R}^{3}\times [0,T]$. Here $\dot{X}_{r}(\mathbb{R}^{3})$ is the multiplier space.  相似文献   

8.
In this paper we deal with local estimates for parabolic problems in ${\mathbb{R}^N}$ with absorbing first order terms, whose model is $$\left\{\begin{array}{l@{\quad}l}u_t- \Delta u +u |\nabla u|^q = f(t,x) \quad &{\rm in}\, (0,T) \times \mathbb{R}^N\,,\\u(0,x)= u_0 (x) &{\rm in}\, \mathbb{R}^N \,,\quad\end{array}\right.$$ where ${T >0 , \, N\geq 2,\, 1 < q \leq 2,\, f(t,x)\in L^1\left( 0,T; L^1_{\rm loc} \left(\mathbb{R}^N\right)\right)}$ and ${u_0\in L^1_{\rm loc}\left(\mathbb{R}^{N}\right)}$ .  相似文献   

9.
Let ∈ :N → R be a parameter function satisfying the condition ∈(k) + k + 1 > 0and let T∈ :(0,1] →(0,1] be a transformation defined by T∈(x) =-1 +(k + 1)x1 + k-k∈x for x ∈(1k + 1,1k].Under the algorithm T∈,every x ∈(0,1] is attached an expansion,called generalized continued fraction(GCF∈) expansion with parameters by Schweiger.Define the sequence {kn(x)}n≥1of the partial quotients of x by k1(x) = ∈1/x∈ and kn(x) = k1(Tn-1∈(x)) for every n ≥ 2.Under the restriction-k-1 < ∈(k) <-k,define the set of non-recurring GCF∈expansions as F∈= {x ∈(0,1] :kn+1(x) > kn(x) for infinitely many n}.It has been proved by Schweiger that F∈has Lebesgue measure 0.In the present paper,we strengthen this result by showing that{dim H F∈≥12,when ∈(k) =-k-1 + ρ for a constant 0 < ρ < 1;1s+2≤ dimHF∈≤1s,when ∈(k) =-k-1 +1ksfor any s ≥ 1where dim H denotes the Hausdorff dimension.  相似文献   

10.
In this note we investigate the asymptotic behavior of the solutions of the heat equation with random, fast oscillating potential
${rcl} \partial_tu_{\varepsilon}(t,x)&=&\dfrac12\Delta_xu_{\varepsilon}(t,x)+{\varepsilon}^{-\gamma}V\left(\dfrac{x}{{\varepsilon}}\right)u_{\varepsilon}(t,x),\,(t,x)\in(0,+\infty)\times{\mathbb R}^d, \\ u_{\varepsilon}(0,x)&=&u_0(x),\,x\in{\mathbb R}^d, $\begin{array}{rcl} \partial_tu_{\varepsilon}(t,x)&=&\dfrac12\Delta_xu_{\varepsilon}(t,x)+{\varepsilon}^{-\gamma}V\left(\dfrac{x}{{\varepsilon}}\right)u_{\varepsilon}(t,x),\,(t,x)\in(0,+\infty)\times{\mathbb R}^d, \\ u_{\varepsilon}(0,x)&=&u_0(x),\,x\in{\mathbb R}^d, \end{array}  相似文献   

11.
We present various inequalities for the error function. One of our theorems states: Let α?≥?1. For all x,y?>?0 we have $$ \delta_{\alpha} < \frac{ \mbox{erf} \left( x+ \mbox{erf}(y)^{\alpha}\right) +\mbox{erf}\left( y+ \mbox{erf}(x)^{\alpha}\right) } {\mbox{erf}\left( \mbox{erf}(x)+\mbox{erf}(y)\right) } < \Delta_{\alpha} $$ with the best possible bounds $$ \delta_{\alpha}= \left\{ \begin{array}{ll} 1+\sqrt{\pi}/2, & \ \ \textrm{{if} $\alpha=1$,}\\ \sqrt{\pi}/2, & \ \ \textrm{{if} $\alpha>1$,}\\ \end{array}\right. \quad{\mbox{and} \,\,\,\,\, \Delta_{\alpha}=1+\frac{1}{\mbox{erf}(1)}.} $$   相似文献   

12.
We study large time asymptotic behavior of solutions to the periodic problem for the nonlinear damped wave equation
$ \left\{ {l} u_{tt}+2\alpha u_{t}-\beta u_{xx}=-\lambda \left| u\right| ^{\sigma}u,\text{ }x\in \Omega ,t >0 , \\ u(0,x)=\phi \left( x\right) ,\text{}u_{t}(0,x)=\psi \left( x\right) ,\text{ }x\in \Omega , \right. $ \left\{ \begin{array}{l} u_{tt}+2\alpha u_{t}-\beta u_{xx}=-\lambda \left| u\right| ^{\sigma}u,\text{ }x\in \Omega ,t >0 , \\ u(0,x)=\phi \left( x\right) ,\text{}u_{t}(0,x)=\psi \left( x\right) ,\text{ }x\in \Omega , \end{array} \right.  相似文献   

13.
This paper deals with the optimal transportation for generalized Lagrangian L = L(x, u, t), and considers the following cost function: c(x, y) = inf x(0)=x x(1)=y u∈U∫_0~1 L(x(s), u(x(s), s), s)ds, where U is a control set, and x satisfies the ordinary equation x(s) = f(x(s), u(x(s), s)).It is proved that under the condition that the initial measure μ0 is absolutely continuous w.r.t. the Lebesgue measure, the Monge problem has a solution, and the optimal transport map just walks along the characteristic curves of the corresponding Hamilton-Jacobi equation:V_t(t, x) + sup u∈UV_x(t, x), f(x, u(x(t), t), t)-L(x(t), u(x(t), t), t) = 0,V(0, x) = Φ0(x).  相似文献   

14.
This paper is concerned with the $p(x)$-Laplacian equation of the form $$ \left\{\begin{array}{ll} -\Delta_{p(x)} u=Q(x)|u|^{r(x)-2}u, &\mbox{in}\ \Omega,\u=0, &\mbox{on}\ \partial \Omega, \end{array}\right. \eqno{0.1} $$ where $\Omega\subset\R^N$ is a smooth bounded domain, $1p^+$ and $Q: \overline{\Omega}\to\R$ is a nonnegative continuous function. We prove that (0.1) has infinitely many small solutions and infinitely many large solutions by using the Clark''s theorem and the symmetric mountain pass lemma.  相似文献   

15.
We consider the following nonperiodic diffusion systems
$ \left\{{ll} \partial_{t}u-\triangle_{x}u+b(t,x)\nabla_{x}u+V(x)u=G_{v} (t,x,u,v), \\ -\partial_{t}v-\triangle_{x}v-b(t,x)\nabla_{x}v+V(x)v=G_{u} (t,x,u,v), \right. {\forall}(t,x)\in\mathbb{R} \times\mathbb{R}^{N}, $ \left\{\begin{array}{ll} \partial_{t}u-\triangle_{x}u+b(t,x)\nabla_{x}u+V(x)u=G_{v} (t,x,u,v), \\ -\partial_{t}v-\triangle_{x}v-b(t,x)\nabla_{x}v+V(x)v=G_{u} (t,x,u,v), \end{array}\right. {\forall}(t,x)\in\mathbb{R} \times\mathbb{R}^{N},  相似文献   

16.
We consider non-autonomous wave equations $$\left\{\begin{array}{ll}\ddot{u}(t) + \mathcal{B}(t) \dot{u}(t) + \mathcal{A}(t)u(t) = f(t) \quad t{\text -}{\rm a.e.}\\ u(0) = u_{0},\, \dot{u}(0) = u_{1}.\\\end{array}\right.$$ where the operators ${\mathcal{A}(t)}$ and ${\mathcal{B}(t)}$ are associated with time-dependent sesquilinear forms ${\mathfrak{a}(t, ., .)}$ and ${\mathfrak{b}}$ defined on a Hilbert space H with the same domain V. The initial values satisfy ${u_0 \in V}$ and ${u_1 \in H}$ . We prove well-posedness and maximal regularity for the solution both in the spaces V′ and H. We apply the results to non-autonomous Robin-boundary conditions and also use maximal regularity to solve a quasilinear problem.  相似文献   

17.
This paper deals with the following mixed problem for Quasilinear hyperbolic equationsThe M order uniformly valid asymptotic solutions are obtained and there errors areestimated.  相似文献   

18.
Potential Analysis - We consider parabolic equations of the form $$ u_{t}-\text{div} \left( |\nabla u|^{p-2}\nabla u+ a(x,t)|\nabla u|^{q-2}\nabla u\right)= 0, a(x,t)\geq 0. $$ In the range $\frac...  相似文献   

19.
20.
In this article we generahze the polynomials of Kantorovitch \({P_n}(f)\) . Let \({B_n}\) be a sequence of linear operators from C[a,b] into \({H_n}\), if \[f(t) \in L[a,b],F(u) = \int_a^u {f(t)dt} ,{A_n}(f(t),x) = \frac{d}{{dx}}{B_{n + 1}}(F(u),x)\], here \({B_n}\)satisfy\[\begin{array}{l} (a):{B_n}(1,x) \equiv 1,{B_n}(u,x) \equiv x;\(b):for{\kern 1pt} {\kern 1pt} g(u) \in C[a,b]{\kern 1pt} {\kern 1pt} we{\kern 1pt} {\kern 1pt} have{\kern 1pt} {\kern 1pt} {B_n}(g(u),b) = g(b). \end{array}\]. we call such \({A_n}(f)\) generalized polynomials of Kantorovitch (denoted by \({A_n}(f) \in K\) ). Let \[\begin{array}{l} {\varepsilon _n}({W^2};x)\mathop = \limits^{def} \mathop {\sup }\limits_{f \in {W^2}} \left| {{A_n}(f(t),x) - f(x) - f'(x)({A_n}(t,x) - x)} \right|,\{\varepsilon _n}{({W^2}{L^p})_{{L^p}}}\mathop = \limits^{def} \mathop {\sup }\limits_{f \in {W^2}{L^p}} {\left\| {{A_n}(f(t),x) - f(x) - f'(x)({A_n}(t,x) - x)} \right\|_p}. \end{array}\] We have proved the following results: Let An he a sequence of linear continuous operators of type \[C[a,b] \Rightarrow C[a,b],{D_n}(x,z)\mathop = \limits^{def} {A_n}(\left| {t - z} \right|,x) - \left| {x - z} \right| - ({A_n}(t,x) - x)Sgn(x - z),{A_n}(1,x) = 1\] then (1):\({\varepsilon _n}({W^2};x) = \frac{1}{2}\int_a^b {\left| {{D_n}(x,z)} \right|} dz\), (2): Moreover, if \({A_n}\) be a sequence of linear positive operators, then for \(\left[ {\begin{array}{*{20}{c}} {a \le x \le b}\{a \le z \le b} \end{array}} \right]\) ,we have \({D_n}(x,z) \ge 0\), and \({\varepsilon _n}({W^2};x) = \frac{1}{2}{A_n}({(t - x)^2},x)\). Let \({A_n}(f) \in K\) be a sequence of linear positive operators,\[{R_n}{(z)_L} = \frac{1}{2}\int_a^b {\left| {{D_n}(x,z)} \right|} dx\],then \[{R_n}{(z)_L} = \frac{1}{2}\left[ {{B_{n + 1}}({u^2},z) - {z^2}} \right]\] and \[{\varepsilon _n}{({W^2}L)_L}{\rm{ = }}\frac{1}{2}\left\| {{B_{n + 1}}({u^2},z) - {z^2}} \right\|\]. Let \[{g_n} = \frac{1}{2}\mathop {\max }\limits_{a \le x \le b} {A_n}({(t - x)^2},x),{h_n} = \frac{1}{2}\mathop {\max }\limits_{a \le z \le b} \left[ {{B_{n + 1}}({u^2},z) - {z^2}} \right],\] then \[{\varepsilon _n}{({W^2}{L^p})_{{L^p}}} \le {g_n}^{1 - \frac{1}{p}}{h_n}^{\frac{1}{p}}(1 < p < \infty ).\]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号