首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
This paper presents an improved active contour model by combining the Chan–Vese model, the region-scalable fitting energy model, the globally convex segmentation method and the split Bregman method. A weight function that varies with the location of a given image is used to control the influence of the local and global information dynamically. We first present our model in a 2-phase level set formulation and then extend it to a multi-phase formulation. By taking the local and global information into consideration together, our model can segment more general images, especially images with intensity inhomogeneity. Our model has been applied to synthetic and real images with promising results. Numerical results show the advantages of our model compared with other models. The accuracy and efficiency are demonstrated by the numerical results. Besides, our model is robust in the presence of noise.  相似文献   

2.
Local and global intensity fitting energy are widely used for image segmentation. In order to improve the segmentation quality in the presence of intensity inhomogeneity, in this paper, we propose a new adaptive rule for obtaining weighting parameter estimation between the local and global intensity fitting energy. Following the minimization of the energy functional, the value of the weighting parameter is dynamically updated with the contour evolution, which is effective and accurate for extracting the object.  相似文献   

3.
Segmenting intensity inhomogeneous images is a challenging task for both local and global methods. Some hybrid methods have great advantages over the traditional methods in inhomogeneous image segmentation. In this paper, a new hybrid method is presented, which incorporates image gradient, local environment and global information into a framework, called adaptive-weighting active contour model. The energy or level set functions in the framework mainly include two parts: a global term and local term. The global term aims to enhance the image contrast, and it can also accelerate the convergence rate when minimizing the energy function. The local term integrates fractional order differentiation, fractional order gradient magnitude, and difference image information into the well-known local Chan–Vese model, which has been shown to be effective and efficient in modeling the local information. The local term can also enhance low frequency information and improve the inhomogeneous image segmentation. An adaptive weighting strategy is proposed to balance the actions of the global and local terms automatically. When minimizing the level set functions, regularization can be imposed by applying Gaussian filtering to ensure smoothness in the evolution process. In addition, a corresponding stopping criterion is proposed to ensure the evolving curve automatically stops on true boundaries of objects. Dice similarity coefficient is employed as the comparative quantitative measures for the segmented results. Experiments on synthetic images as well as real images are performed to demonstrate the segmentation accuracy and computational efficiency of the presented hybrid method.  相似文献   

4.
Image segmentation is a key and fundamental problem in image processing, computer graphics, and computer vision. Level set based method for image segmentation is used widely for its topology flexibility and proper mathematical formulation. However, poor performance of existing level set models on noisy images and weak boundary limit its application in image segmentation. In this paper, we present a region consistency constraint term to measure the regional consistency on both sides of the boundary, this term defines the boundary of the image within a range, and hence increases the stability of the level set model. The term can make existing level set models significantly improve the efficiency of the algorithms on segmenting images with noise and weak boundary. Furthermore, this constraint term can make edge-based level set model overcome the defect of sensitivity to the initial contour. The experimental results show that our algorithm is efficient for image segmentation and outperform the existing state-of-art methods regarding images with noise and weak boundary.  相似文献   

5.
Image segmentation is an important task in many fields, and there are plentiful models based on region or edges. Nowadays, the speed of calculation and the universal applicability of the model attract much attention. To some extent, the traditional energy model can segment images suffering from intensity inhomogeneity while it relies on initialization seriously. In this paper, we present a new model that consists of an arbitrary active contour model and proposed shape priori information term, which can segment various images accurately and provide an opportunity to carry on parallelizable calculation. The shape priori information term plays a key role in our energy functional and the shape priori information can be chosen diversely. This term also improves the robustness of our model including initial conditions and parameter adjustment. Besides, the split Bregman method is then applied to minimize the energy functional. Multiple experimental results and comparisons are shown to demonstrate the superiority of the proposed model. Firstly, fuzzy clustering, threshold and manual operation are used to be the shape priori information. Secondly, it is illustrated that our model is not sensitive to parameters and initial contours. Computation time and accuracy are also obviously improved when using the parallel algorithm.  相似文献   

6.
Image segmentation is a hot topic in image science. In this paper we present a new variational segmentation model based on the theory of Mumford-Shah model. The aim of our model is to divide noised image, according to a certain criterion, into homogeneous and smooth regions that should correspond to structural units in the scene or objects of interest. The proposed region-based model uses total variation as a regularization term, and different fidelity term can be used for image segmentation in the cases of physical noise, such as Gaussian, Poisson and multiplicative speckle noise. Our model consists of five weighted terms, two of them are responsible for image denoising based on fidelity term and total variation term, the others assure that the three conditions of adherence to the data, smoothing, and discontinuity detection are met at once. We also develop a primal-dual hybrid gradient algorithm for our model. Numerical results on various synthetic and real images are provided to compare our method with others,these results show that our proposed model and algorithms are effective.  相似文献   

7.
在错觉轮廓捕捉模型建立前,我们要得到根据物体边界的符号距离函数时,用Eikonal方程不能实现的,我们用基于水平集方法的分割技术实现,扩大了模型的使用范围;在Zhu和Chan等人的错觉轮廓捕捉模型基础上引入了李纯明等人提出的符号距离约束信息,这就使得在水平集函数演化时不必对其重新初始化,并大大简化了模型的数值处理水平集函数的演化速度.并通过实验验证了该方法的优势.  相似文献   

8.
This article introduces a new normalized nonlocal hybrid level set method for image segmentation. Due to intensity overlapping, blurred edges with complex backgrounds, simple intensity and texture information, such kind of image segmentation is still a challenging task. The proposed method uses both the region and boundary information to achieve accurate segmentation results. The region information can help to identify rough region of interest and prevent the boundary leakage problem. It makes use of normalized nonlocal comparisons between pairs of patches in each region, and a heuristic intensity model is proposed to suppress irrelevant strong edges and constrain the segmentation. The boundary information can help to detect the precise location of the target object, it makes use of the geodesic active contour model to obtain the target boundary. The corresponding variational segmentation problem is implemented by a level set formulation. We use an internal energy term for geometric active contours to penalize the deviation of the level set function from a signed distance function. At last, experimental results on synthetic images and real images are shown in the paper with promising results.  相似文献   

9.
In this paper, we study a deblurring algorithm for distorted images by random impulse response. We propose and develop a convex optimization model to recover the underlying image and the blurring function simultaneously. The objective function is composed of 3 terms: the data‐fitting term between the observed image and the product of the estimated blurring function and the estimated image, the squared difference between the estimated blurring function and its mean, and the total variation regularization term for the estimated image. We theoretically show that under some mild conditions, the resulting objective function can be convex in which the global minimum value is unique. The numerical results confirm that the peak‐to‐signal‐noise‐ratio and structural similarity of the restored images by the proposed algorithm are the best when the proposed objective function is convex. We also present a proximal alternating minimization scheme to solve the resulting minimization problem. Numerical examples are presented to demonstrate the effectiveness of the proposed model and the efficiency of the numerical scheme.  相似文献   

10.
Variational registration models are non-rigid and deformable imaging techniques for accurate registration of two images. As with other models for inverse problems using the Tikhonov regularization, they must have a suitably chosen regularization term as well as a data fitting term. One distinct feature of registration models is that their fitting term is always highly nonlinear and this nonlinearity restricts the class of numerical methods that are applicable. This paper first reviews the current state-of-the-art numerical methods for such models and observes that the nonlinear fitting term is mostly ‘avoided’ in developing fast multigrid methods. It then proposes a unified approach for designing fixed point type smoothers for multigrid methods. The diffusion registration model (second-order equations) and a curvature model (fourth-order equations) are used to illustrate our robust methodology. Analysis of the proposed smoothers and comparisons to other methods are given. As expected of a multigrid method, being many orders of magnitude faster than the unilevel gradient descent approach, the proposed numerical approach delivers fast and accurate results for a range of synthetic and real test images.  相似文献   

11.
In this paper, we propose a new method for image restoration problems, which are degraded by impulsive noise, with nonconvex data fitting term and nonconvex regularizer.The proposed method possesses the advantages of nonconvex data fitting and nonconvex regularizer simultaneously, namely, robustness for impulsive noise and efficiency for restoring neat edge images.Further, we propose an efficient algorithm to solve the “Nonconvex+Nonconvex” structure problem via using the alternating direction minimization, and prove that the algorithm is globally convergent when the regularization parameter is known. However, the regularization parameter is unavailable in general. Thereby, we combine the algorithm with the continuation technique and modified Morozov’s discrepancy principle to get an improved algorithm in which a suitable regularization parameter can be chosen automatically. The experiments reveal the superior performances of the proposed algorithm in comparison with some existing methods.  相似文献   

12.
基于分数阶微积分正则化的图像处理   总被引:1,自引:0,他引:1  
陈云  郭宝裕  马祥园 《计算数学》2017,39(4):393-406
全变分正则化方法已被广泛地应用于图像处理,利用此方法可以较好地去除噪声,并保持图像的边缘特征,但得到的优化解会产生"阶梯"效应.为了克服这一缺点,本文通过分数阶微积分正则化方法,建立了一个新的图像处理模型.为了克服此模型中非光滑项对求解带来的困难,本文研究了基于不动点方程的迫近梯度算法.最后,本文利用提出的模型与算法进行了图像去噪、图像去模糊与图像超分辨率实验,实验结果表明分数阶微积分正则化方法能较好的保留图像纹理等细节信息.  相似文献   

13.
In this paper, we propose a novel Retinex induced piecewise constant variational model for simultaneous segmentation of images with intensity inhomogeneity and bias correction. Firstly, we obtain an additive model by decomposing the original image into a smooth bias component and a structure part based on the Retinex theory. Secondly, the structure part can be modeled by the piecewise constant variational model and thus deduced a new data fidelity term. Finally, we formulate a new energy functional by incorporating the data fidelity term into the level set framework and introducing a GL-regularizer to the level set function and a smooth regularizer to model the bias component. Based on the alternating minimization algorithm and the operator splitting method, we present a numerical scheme to solve the minimization problem efficiently. Experimental results on images from diverse modalities demonstrate the competitive performances of the proposed model and algorithm over other representative methods in term of efficiency and robustness.  相似文献   

14.
Variational registration models are non-rigid and deformable imaging techniques for accurate registration of two images. As with other models for inverse problems using the Tikhonov regularization, they must have a suitably chosen regularization term as well as a data fitting term. One distinct feature of registration models is that their fitting term is always highly nonlinear and this nonlinearity restricts the class of numerical methods that are applicable. This paper first reviews the current state-of-the-art numerical methods for such models and observes that the nonlinear fitting term is mostly ‘avoided’ in developing fast multigrid methods. It then proposes a unified approach for designing fixed point type smoothers for multigrid methods. The diffusion registration model (second-order equations) and a curvature model (fourth-order equations) are used to illustrate our robust methodology. Analysis of the proposed smoothers and comparisons to other methods are given. As expected of a multigrid method, being many orders of magnitude faster than the unilevel gradient descent approach, the proposed numerical approach delivers fast and accurate results for a range of synthetic and real test images.  相似文献   

15.
Variational models for image segmentation are usually solved by the level set method, which is not only slow to compute but also dependent on initialization strongly. Recently, fuzzy region competition models or globally convex segmentation models have been introduced. They are insensitive to initialization, but contain TV-regularizers, making them difficult to compute. Goldstein, Bresson and Osher have applied the split Bregman iteration to globally convex segmentation models which avoided the regularization of TV norm and speeded up the computation. However, the split Bregman method needs to solve a partial differential equation (PDE) in each iteration. In this paper, we present a simple algorithm without solving the PDEs proposed originally by Jia et al. (2009) with application to image segmentation problems. The algorithm also avoids the regularization of TV norm and has a simpler form, which is in favor of implementing. Numerical experiments show that our algorithm works faster and more efficiently than other fast schemes, such as duality based methods and the split Bregman scheme.  相似文献   

16.
This article introduces a novel variational model for restoring images degraded by Cauchy noise and/or blurring.The model integrates a nonconvex data-fidelity term with two regularization terms,a sparse representation prior over dictionary learning and total generalized variation(TGV)regularization.The sparse representation prior exploiting patch information enables the preservation of fine features and textural patterns,while adequately denoising in homogeneous regions and contributing natural visual quality.TGV regularization further assists in effectively denoising in smooth regions while retaining edges.By adopting the penalty method and an alternating minimization approach,we present an efficient iterative algorithm to solve the proposed model.Numerical results establish the superiority of the proposed model over other existing models in regard to visual quality and certain image quality assessments.  相似文献   

17.
The Mumford-Shah energy functional is a successful image segmentation model. It is a non-convex variational problem and lacks of good initialization techniques so far. In this paper, motivated by the fact that image histogram is a combination of several Gaussian distributions, and their centers can be considered as approximations of cluster centers, we introduce a histogram-based initialization method to compute the cluster centers. With this technique, we then devise an effective multi-region Mumford-Shah image segmentation method, and adopt the recent proximal alternating minimization method to solve the minimization problem. Experiments indicate that our histogram initialization method is more robust than existing methods,and our segmentation method is very effective for both gray and color images.  相似文献   

18.
We consider the inpainting problem for noisy images. It is very challenge to suppress noise when image inpainting is processed. An image patches based nonlocal variational method is proposed to simultaneously inpainting and denoising in this paper. Our approach is developed on an assumption that the small image patches should be obeyed a distribution which can be described by a high dimension Gaussian Mixture Model. By a maximum a posteriori (MAP) estimation, we formulate a new regularization term according to the log-likelihood function of the mixture model. To optimize this regularization term efficiently, we adopt the idea of the Expectation Maximization (EM) algorithm. In which, the expectation step can give an adaptive weighting function which can be regarded as a nonlocal connections among pixels. Using this fact, we built a framework for non-local image inpainting under noise. Moreover, we mathematically prove the existence of minimizer for the proposed inpainting model. By using a splitting algorithm, the proposed model are able to realize image inpainting and denoising simultaneously. Numerical results show that the proposed method can produce impressive reconstructed results when the inpainting region is rather large.  相似文献   

19.
20.
Images captured by image acquisition systems using photon-counting devices such as astronomical imaging, positron emission tomography and confocal microscopy imaging, are often contaminated by Poisson noise. Total variation (TV) regularization, which is a classic regularization technique in image restoration, is well-known for recovering sharp edges of an image. Since the regularization parameter is important for a good recovery, Chen and Cheng (2012) proposed an effective TV-based Poissonian image deblurring model with a spatially adapted regularization parameter. However, it has drawbacks since the TV regularization produces staircase artifacts. In this paper, in order to remedy the shortcoming of TV of their model, we introduce an extra high-order total variation (HTV) regularization term. Furthermore, to balance the trade-off between edges and the smooth regions in the images, we also incorporate a weighting parameter to discriminate the TV and the HTV penalty. The proposed model is solved by an iterative algorithm under the framework of the well-known alternating direction method of multipliers. Our numerical results demonstrate the effectiveness and efficiency of the proposed method, in terms of signal-to-noise ratio (SNR) and relative error (RelRrr).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号