首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
The magnetic susceptibility of 1,1′,2,2′-tetramethylcobaltocene, Co[C5H3(CH3)2]2, and 1,1′-diethylcobaltocene, Co(C5H4C2H5)2, has been studied between 0.99 and 296 K. The data are well reproduced by a calculation of the dynamic Jahn-Teller effect for the 2E1g(a1g2e2g4e1g) ground state of D5d symmetry. A suitable set of parameter values is given by ζ = 100 cm−1, δ = 150 cm−1, kJT = 0.40, κ = 0.70. The magnetism of cobaltocene, Co(C5H5)2, may be described by parameter values of comparable magnitude. The results imply a significantly larger reduction of the spin-orbit coupling parameter ζ due to covalency than of the orbital reduction factor κ.  相似文献   

2.
3.
4.
Oxidative Aryl-Aryl-Coupling of 6,6′,7,7′-Tetramethoxy-1,1′,2,2′,3,3′,4,4′-octahydro-1,1′-biisoquinoline Derivatives We describe the synthesis of 2 by intramolecular oxidative coupling of 1, 1′-biisoquinoline derivatives 1 (Scheme 1). This heterocyclic system can be considered as a union of two apomorphine molecules and may thus exhibit dopaminergic activity. - The readily available tetrahydrobiisoquinoline 6 was methylated to 11 (Scheme 4) and reduced (with NaBH3CN) to rac- 7 and (catalytically) to meso- 7 (Scheme 3). Reduction of 11 with NaBH4 and of the biurethane rac- 9 with LiAlH4/AlCl3 afforded meso- and rac- 10 , respectively (Scheme 4). Demethylation of 6 , meso- 10 , meso- and rac- 7 led to 12 , meso- 14 , meso- and rac- 13 , respectively (Scheme 5). The latter two phenols were converted with chloroformic ester to the hexaethoxycarbonyl derivatives meso- and rac- 15 and subsequently saponified to the biurethanes meso- and rac- 16 , respectively (Scheme 5). - In order to assure proximity of the two aromatic rings, the ethano-bridged derivatives meso- and rac- 18 were prepared by condensing meso- and rac- 7 with oxalic ester and reducing the oxalyl derivatives meso- and rac- 17 with LiAlH4/AlCl3, respectively (Scheme 6). The 1H-NMR, spectra at different temperatures showed that rac- 18 populated two conformers but rac- 17 only one, all with C2-symmetry, and that meso- 17 as well as meso- 18 populated two enantiomeric conformers with C1-symmetry. Whereas both oxalyl derivatives 17 were fairly rigid due to the two amide groupings, the ethano derivatives 18 exhibited coalescence temperatures of -20 and 30°. - The intramolecular coupling of the two aromatic rings was successful under ‘non-phenolic oxidative’ conditions with the tetramethoxy derivatives 7, 10 and 18 , the rac-isomers leading to the desired dibenzophenanthrolines, the meso-isomers, however, mostly to dienones (Scheme 9): With VOF3 and FSO3H in CF3COOH/CH2Cl2 rac- 7 was converted to rac- 19 , rac- 18 to rac- 21 and rac- 10 to a mixture of rac- 20 and the dienone 23b of the morphinane type. Under the same conditions meso- 10 was transformed to the dienone 23a of the morphinane type, whereas meso- 18 yielded the dienone 24 of the neospirine type, both in lower yields. The analysis of the spectral data of the six coupling products offers evidence for their structures. With the demethylation of rac- 20 and rac- 21 to rac- 25 and rac- 26 , respectively, the synthetic goal of the work was reached, but only in the rac-series (Scheme 10). - In the course of this work two cleavages of octahydro-1,1′-biisoquinolines at the C(1), C(1′)-bond were observed: (1) The biurethanes 9 and 16 in both the meso- and rac-series reacted with oxygen in CF3COOH solution to give the 3,4-dihydroisoquinolinium salts 27 and 28 ; the latter was deprotonated to the quinomethide 30 (Scheme 11). (2) Under the Clarke-Eschweiler reductive-methylation conditions meso- and rac- 7 were cleaved to the tetrahydroisoquinoline derivative 32 .  相似文献   

5.
Reductive amination of 2,3,4,4′-tetramethoxtybiphenyl-2-carbaldehyde ( 4 ) with MeNH2 afforded methylamine 5 (Scheme 1), Hydroxymethylation of amine 8 , prepared similarly from 4 by reductive amination with benzylamine followed by N-methylation, afforded alcohol 12 which was converted the 5-methyl-substituted methylamine 14 by conventional chemical reactions (Scheme 2), Methylamine 14 was also obtained from ester 16 after hydroxymethylation to alcohol 17 and conventional manipulation of alcohol and ester functions (Scheme 2). Both amines 5 and 14 as well as the 2′, 5-dimethyl-substituted biphenyl 26 prepared from the dialdehyde 25 by a Wolff-Kishner reduction, did not show noteworthy activity in the tubulin binding assay or as inhibitors of tubulin polymerization (Table). However, the 2′ethyl-substituted biphebyl 11 prepared from 4 by reaction with MeLi followed by dehyderation and catalytic reduction of styrene 10 (Scheme 1) showed appreciable activity in both assays, coming close to that of known phenyltropolone models. The X-ray analysis of 14 ·HCl and 11 showed significant difference in the orientation of the rings with respect to one another (Fig.).  相似文献   

6.
The mass spectra of 32 substituted 4-amino-4′-nitroazobenzene compounds have been recorded and the most intense peaks have been used to characterize these spectra. It was found that the spectra of 4-amino-4′-nitroazobenzene compounds are characterized by peaks due to: (1) molecular ions, (2) fragment ions formed by cleavage of one of the carbon-nitrogen bonds adjacent to the azo linkage with the positive charge remaining with the amine fragment, (3) ions formed by cleavage alpha to the amine nitrogen with the charge remaining with the amine substituent, (4) ions formed by cleavage beta to the amine nitrogen with the loss of the amine substituent fragment, (5) secondary ions formed by cleavage beta to the amine nitrogen with the loss of the amine substituent fragment from the primary amine fragment (2), and (6) ions formed by loss of NO from the molecular ion. This work shows that 4-amino-4′-nitroazobenzene compounds exhibit fragmentation which is dependent in a consistent manner on the types of substituents. This work provides a basis for a systematic approach to the identification of 4-amino-4′-nitroazobenzene compounds.  相似文献   

7.
1,1′-Bicycloalkyl-2,2′-diols (mixtures of stereoisomers) and 1,1′-diols on electron impact give rise to strong peaks equivalent to [M-1]+ions, corresponding to cycloalkenone fragments and obviously involving hydrogen atom migrations. Deuterium labelling and substitution techniques reveal the operation of different rearrangement mechanisms for the two series of isomeric compounds. Thus, in the 1,1′-bicycloalkyl-2,2′-diols a ring hydrogen atom is involved in the rearrangement, whereas in the 1,1′-bicycloalkyl-1,1′-diols (pinacols) the hydroxylic hydrogen atoms migrate.  相似文献   

8.
The electron impact mass spectra of monosilyl and mixed acyl-silyl derivatives of 2′-deoxynucleosides are described in detail. (Silyl = tert-butyldimethylsilyl, cyclo-tetramethylene-isopropylsilyl, or cyclo-tetramethylene-tert-butylsilyl; acyl = acetyl or trifluoroacetyl.) The interpretation of the fragmentation pathways was aided by metastable ion decomposition studies, precise mass and deuterium labelling measurements. Mass spectrally, the acyl substituents are mostly ‘passive’ and have (with possibly one exception) little fragmentation directing capability. In contrast, the silyl groups have powerful fragmentation directing properties. Elimination of the bulky alkyl radical R˙ (tert-butyl or isopropyl) from the molecular ion produces the siliconium ion, [M–R]+, which is the precursor for most of the other prominent ions in the spectra. These arise from ‘siliconium ion rearrangements’ resulting from the interaction of the positively charged siliconium ion centre with the electron dense regions (i.e. oxygens) in the molecule, to form cyclic silyloxonium ions which subsequently decompose. Since the interacting oxygen and silicon must be sterically accessible, the fragment ion types and their abundances are very dependent upon structure. Consequently, [M–R]+ ions formed from 3′- or 5′-O-silyl groups give rise to different sets of daughter ions which, for the most part, are not found, or have very low abundances, in the mass spectra of underivatized or trimethylsilylated nucleosides. Detailed information on sugar and base moieties and isomeric substitution is readily obtained.  相似文献   

9.
This paper describes the development of novel aromatic platforms for supramolecular construction. By the Suzuki cross‐coupling protocol, a variety of functionalized m‐terphenyl derivatives were prepared (Schemes 1–4). Macrolactamization of bis(ammonium salt) (S,S)‐ 6 with bis(acyl halide) 7 afforded the macrocyclic receptor (S,S)‐ 2 (Scheme 1), which was shown by 1H‐NMR titration studies to form ‘nesting' complexes of moderate stability (Ka between 130 and 290 M ?1, 300 K) with octyl glucosides 13 – 15 (Fig. 2) in the noncompetitive solvent CDCl3. Suzuki cross‐coupling starting from 3,3′,5,5′‐tetrabromo‐1,1′‐biphenyl provided access to a novel series of extended aromatic platforms (Scheme 5) for cleft‐type (Fig. 1) and macrotricyclic receptors such as (S,S,S,S)‐ 1 . Although mass‐spectral evidence for the formation of (S,S,S,S)‐ 1 by macrolactamization between the two functionalized 3,3′,5,5′‐tetraaryl‐1,1′‐biphenyl derivatives (S,S)‐ 33 and 36 was obtained, the 1H‐ and 13C‐NMR spectra of purified material remained rather inconclusive with respect to both purity and constitution. The versatile access to the novel, differentially functionalized 3,3′,5,5′‐tetrabromo‐1,1′‐biphenyl platforms should ensure their wide use in future supramolecular construction.  相似文献   

10.
11.
3,3′-Oxybispyridine is prepared by reaction of 3-hydroxypyridine with 3-bromopyridine and converted to the 1,1′-dimethyl diquaternary salt with methyl iodide. The salt is reduced polarographically by a one electron transfer not involving hydrogen to an unstable radical cation at a potential (Eo) of ?0.81 V in the pH range 6.3-12.0.  相似文献   

12.
1,1′-Dialkylferrocene-3,3′-dicarbaldehydes ( 1a–c ) with long alkyl chains such as ethyl, hexyl, and dodecyl groups were prepared in 13–25% yield via three-step reactions. The titanium-induced dicarbonyl-coupling reaction of 1a–c gave poly(1,1′-dialkyl-3,3′-ferrocenylenevi-nylene)s ( 2a–c ) in quantitative yields, which were the molecular weights of 3000–10,000 and highly soluble in chloroform, benzene, and hexane. The electrical conductivity and the third-order nonlinear optical susceptibility for poly(1,1′-dihexyl-3,3′-ferrocenylenevinylene) ( 2b ) were estimated to be 1 × 10?2 S/cm on doping with iodine and 1–4 × 10?12 esu at a wavelength of 1–2.4 μm, respectively. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
We present mass spectrometry experiments on tetracyanoquinodimethane (TCNQ), deuteriated TCNQ and on some TCNQ salts. Apart from the usual nitrile fragmentation, at least two original features appear in the spectra. The first is the formation of TCNQ dimers, as evidenced by their molecular peaks and their fragmentation. The second aspect concerns the spectra of the ammonium salts, which show that hydrogen or alkyl groups add to TCNQ before its decomposition, leading to new fragments (as m/z 141).  相似文献   

14.
The 2-aminoisoflavones studied exhibited some familiar fragmentation pathways, such as the formation of the retro-Diels–Alder ions. However, substitutions at C(2), C(3′), C(4′) and C(6) induced some specific decompositions of both mass spectrometric and pyrolytic origin. Pyrolytic decompositions reverse to the Mannich reaction occurred with all compounds to variable extents. The three compounds with the (Me)2NSO2 substitution at C(6) exhibited another type of pyrolytic reaction, namely the formation of products corresponding to ions of m/z 272, 300 and 314, depending on the type of substitution at C(3′). The occurrence of an interesting ‘ortho effect’, the elimination of the elements of CH3O from C(3′) and C(4′), was also established.  相似文献   

15.
16.
Electron impact (El) ionization and positive and negative liquid secondary ion mass Spectrometry (pLSIMS and nLSIMS) of eight charge-transfer complexes of 7,7′,8,8′-tetracyanoquinodimethane (TCNQ)-aromatic systems and of the individual π-donors and -acceptors was examined. The El spectra exhibited the molecular ions of both the donor and the acceptor of each complex. The molecular ion of the π-donor was observed in pLSIMS using m-nitrobenzyl alcohol (NBA) if its oxidation potential is lower than 1.2 V, but when the oxidation potential is higher than 1.9 V, no molecular ion was detected. On the other hand, nLSIMS exhibited the molecular ion of TCNQ in all cases. Participation of an excited state of NBA in the ionization process is suggested.  相似文献   

17.
4,4′-Binaphthyl-1,1′,8,8′-tetracarboxylic dianhydride was synthesized from 4-chloro-1,8-naphthalic anhydride and polymerized with aromatic and pliphatic diamines in m-cresol or N-methyl-2-pyrrolidinone (NMP). The polyimides, except for two derived from p-phenylenediamine and hydrazine, are soluble in 1,1,2,2-tetrachloroethane and NMP. Their intrinsic viscosities ranged from 0.36 to 2.20 dL/g. The polymers showed excellent thermal and thermooxidative stabilities and displayed weak glass transition temperatures. Young's moduli of some polymer films were in the range of 2.5 and 5.4 GPa at 30°C. The aliphatic polyimides exhibited a stronger fluorescence than the aromatic polyimides. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
19.
20.
The macrocyclic biisoquinoline 14 was synthesized in just four preparative steps starting from the simple biscarboxaldehyde 8 . The interaction with camphorsulfonic acid induces an acid‐catalyzed partial deracemization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号