首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文通过振荡流热管可视化实验,研究热管传热性能与流型的变化。实验中可观察到,振荡热管内工质运动通常处于“间歇-振荡”交替运行的状态。随加热功率的增大,间歇时间所占比例逐步减小。随着加热功率的增大,热管内的流型也发生相应变化,实验中主要观察到了泡状流、塞状流、环状流、局部波状流等多种流型。汽泡的生成、长大、聚合、分离和湮...  相似文献   

2.
H. Gül 《实验传热》2013,26(1):73-84

An experimental investigation was made to study heat transfer in a pipe which is oscillated about an axis that is parallel to, but offset from, the pipe axis. Air was used as working fluid. The experimental setup was designed so as to provide oscillating motion of a test pipe. The measurement systems were installed on the oscillating section. For both steady and oscillating flows, the bulk air temperature and wall temperature, pressure drop, and frequency were measured. The parameters for this study were chosen as Reynolds number from 5,000 to 20,000 and oscillating frequencies from 10 to 20 Hz. The variations of Nusselt number versus these parameters were determined and presented graphically. Heat transfer enhancement of 42% was achieved at constant pumping power for oscillatory flow.  相似文献   

3.
针对制约脉冲管制冷机效率提高的蓄冷器内交变流动与换热问题,本文使用格子Boltzmann方法计算并分析了多孔介质内交变流动与换热特性。结果表明,交变流动压力波振幅对速度与压力和温度间的相位差的影响很小;通道界面处速度与压力的相位差在某一孔隙率下有一极小值;多孔介质内最大阻力系数与雷诺数的关系可以为设计蓄冷器时填料结构的...  相似文献   

4.
唐古月  娄钦  王浩原 《计算物理》2021,38(3):301-312
采用格子玻尔兹曼方法对有三种恒温热源(圆形、三角形、方形)参与的圆管内纳米流体(铜-水)自然对流进行数值研究.主要研究瑞利(Ra)数,纳米颗粒体积分数以及热源几何形状等控制参数对纳米流体的流动与传热的影响.结果发现纳米颗粒体积分数的增加有利于强化传热,且在Ra数较小时,平均努塞尔(Nu)数增加的幅度要优于Ra数较大的情...  相似文献   

5.
Y. Wang  J. Cen 《实验传热》2015,28(1):1-8
Modern electronics require better thermal management technologies to ensure long lifetime stability and reliable working. Aiming to evaluate the feasibility for a loop heat pipe being used for the heat dissipation of electronics, a stainless-steel/water loop heat pipe is design and an experimental system to study its heat transfer performance is set up. Experimental results show that at optimal heat load and with the loop heat pipe being aligned perpendicularly to the horizontal plane, its thermal resistance is lowered to be ~0.27 K/W. The loop heat pipe also shows good startup characteristics and can steadily work as well. All these indicate that the loop heat pipe has the potential to be a good solution for cooling of modern electronics.  相似文献   

6.
Heat transfer performances of viscoelastic fluid, water-based Cu nanofluid, and viscoelastic-fluid-based Cu nanofluid flows in a circular pipe at a Peclet number of 40,000 were experimentally studied. It indicates that the viscoelastic fluid turbulent flow gives great heat transfer reduction, while the water-based Cu nanofluid flow shows significant heat transfer enhancement. The viscoelastic-fluid-based Cu nanofluid also exhibits heat transfer enhancement as compared with viscoelastic base fluid flow. The effects of nanoparticle volume fraction, mass concentration of viscoelastic base fluid, and temperature on local convective heat transfer coefficient and possible heat transfer enhancement mechanisms of nanofluid flows were discussed.  相似文献   

7.
平板蒸汽腔与微热管阵列组合式传热装置   总被引:1,自引:0,他引:1  
本文对一种平板式蒸汽腔(均温板)与微热管阵列组合式换热装置进行了传热特性的研究,并将其用于大功率LED的散热.这种组合式换热装置既具有均温板的超高临界热流密度与全向传热的特性,同时具备微热管阵列远距离热输运的优良特性,是解决诸多高热流及其它极端条件下的散热,尤其是被动散热问题的有效方式.  相似文献   

8.
列车牵引变流器功率模块IGBT的散热问题近年来备受关注.本文以微通道内流动沸腾换热的"M"型曲线峰值点传热强化理论为依据,通过实验研究微通道长度和结构对冷板表面温度的影响,发现短通道能够有效控制通道内蒸汽干度水平,使得微通道冷板内以弹状流或薄膜环状流为主流流型,从而获得较高传热系数.在一定面积的冷板内设置短通道组合的分...  相似文献   

9.
Pressure drop, heat transfer, and energy performance of ZnO/water nanofluid with rodlike particles flowing through a curved pipe are studied in the range of Reynolds number 5000 ≤ Re ≤ 30,000, particle volume concentration 0.1% ≤ Φ ≤ 5%, Schmidt number 104Sc ≤ 3 × 105, particle aspect ratio 2 ≤ λ ≤ 14, and Dean number 5 × 103De ≤ 1.5 × 104. The momentum and energy equations of nanofluid, together with the equation of particle number density for particles, are solved numerically. Some results are validated by comparing with the experimental results. The effect of Re, Φ, Sc, λ, and De on the friction factor f and Nusselt number Nu is analyzed. The results showed that the values of f are increased with increases in Φ, Sc, and De, and with decreases in Re and λ. The heat transfer performance is enhanced with increases in Re, Φ, λ, and De, and with decreases in Sc. The ratio of energy PEC for nanofluid to base fluid is increased with increases in Re, Φ, λ, and De, and with decreases in Sc. Finally, the formula of ratio of energy PEC for nanofluid to base fluid as a function of Re, Φ, Sc, λ, and De is derived based on the numerical data.  相似文献   

10.
本文对自制微管换热器的流动与传热性能进行了实验研究。提出了微细圆管换热器管内单相强制对流换热努摩尔数准则式,并与已有相关文献提出的关联式做了对比,结果表明:微管管内换热系数比常规尺度计算公式预测值要高,同时本文分析了微细管内的压力降、摩擦阻力系数f随雷诺数的关系。研究表明微管管内压降、摩擦系数都比常规尺度预测值要高。  相似文献   

11.
倾斜角度对平板热管性能影响的实验研究   总被引:1,自引:0,他引:1  
本文设计并制作了一种具有深微槽道结构的铜-水平板热管,系统地研究了放置方式对其传热性能的影响。实验测试了不同热流密度、不同倾角下热管正常工作时的稳态温度分布和热阻。结果表明,热管热阻随倾斜角度单调增大。这是因为随着倾角的增加,重力与工质回流方向不一致,重力阻碍了工质的回流起到了作用,所以热管的均热性能下降,热阻增大。水平放置时,热管表现出最佳的工作性能和最小的热阻。  相似文献   

12.
交变流动中突变截面局部损失特性分析   总被引:2,自引:0,他引:2  
从突变截面流道内流体满足的方程组出发,给出交变流动中突变截面阻力系数的定义以及考察方法,采用量纲分析法获得影响局部阻力特性的四个无量纲影响参数:动态雷诺数与幅值雷诺数之比、幅值雷诺数、变截面面积比、声场压力、速度相位差。通过PW(粒子成像测速仪)测量,分析了流场结构特征,并与CFD计算结果对比,验证了CFD计算结果的可...  相似文献   

13.
本文采用内径为40 mm的API X52石油管,建立了包括水平管,倾斜上升管、倾斜下降管和垂直上升管等不同管型的实验回路,实验研究了不同管型中聚合物的减阻性能及其对多相流传热的影响,分析了多相流减阻率与传热降低率两者间的相互关系.研究发现,聚合物减阻对于多相流传热的影响,因不同的管道型态而具有不同的变化规律;减阻率为6...  相似文献   

14.
The flow and convective heat transfer characteristics under different heating loads in micro-pin-fins of circle, diamond and triangle are experimentally investigated with Reynolds number ranging from 0–1,000. The pressure drops, friction factors, thermal resistance and Nusselt number in micro-pin-fins with different cross-section shapes are obtained when the heating load changes from 50 to 150 W. Basing on the experimental results, the mechanisms of the influence of heating load on the resistance and heat transfer characteristics in micro-pin-fins with different cross-section shapes are detailed analysed. It is found that pressure drops in three types of micro-pin-fins all become large with the increase of the heating load, and the change of pressure drop in triangular micro-pin-fins is larger than those in the other two micro-pin-fins. At low Re, the friction factors in the three types of micro-pin-fins become large with the increase of the heating load, but this phenomenon disappears when Re>400 for the circle and diamond micro-pin-fins, and Re>250 for the triangular micro-pin-fins. The convective heat transfer in micro-pin-fins with cross-section shapes of circle, diamond and is enhanced by increasing the heating load, but the convective heat transfer coefficients and Nu in the triangular micro-pin-fins becomes slightly smaller when Re>250.  相似文献   

15.
L.P. Pang  J. Cheng 《实验传热》2015,28(4):317-327
Cooling technology is facing new challenges with the increase of electronic equipment power onboard aircraft. The traditional heat sink based on high-altitude bleed air does not satisfy this increase of cooling demands. In this article, an air/air-type skin heat exchanger is studied for cooling aircraft electronic equipment. It uses outside high-altitude cold air rather than bleed air as a heat sink. This cooling technology can effectively remove the heat load of high-power electronic devices without greatly increasing aircraft performance penalty. To assess its high-altitude heat transfer performance, an experimental prototype was designed and made. Some experiments were conducted on a ground experimental test. The heat transfer criteria formulas were obtained for both the side air in the skin heat exchanger and its convective heat transfer coefficients. Based on these experimental analyses, the heat transfer performances of the skin heat exchanger in a high-altitude cruise condition are deduced when it is assumed to be installed at an unfavorable position and a favorable position, separately. This work tries to provide a technical support for its future onboard application.  相似文献   

16.
本文针对普通住宅房间设计了一台新型平板式热管换热器,该换热器结构紧凑、体积小巧。为研究该换热器的使用条件,本文开展了不同工质(R113、R141b以及这两种工质的混合物)对该热管换热器换热效率影响的实验研究。整个实验在夏季工况下进行,热管真空度为1×10~(-3)Pa,充液量(灌入热管换热器内的工质体积与热管换热器体积之比)为1/3。实验结果表明:该热管换热器热回收效率较高。在整个风量范围内,R141b作为工质的热管换热器换热效果最好,最高效率达到了58.2%。  相似文献   

17.
Efficient and economical utilization of industrial waste heat would result in reduced energy use and thereby contribute to reduction of greenhouse gas emissions to the atmosphere. Two-phase thermosyphon technology has demonstrated the potential capability for waste heat recovery, but it has not been yet utilized in large-scale industrial applications. As a part of an industrial project, various types of thermosyphon heat pipes have been designed and tested for extraction of waste heat and process control in aluminum industry. This article presents the heat and mass transfer model, developed to provide a fast and accurate simulation tool for industrial application of thermosyphon heat pipe technology for waste heat utilization. The mathematical model considers the energy, momentum, and mass transfer equations, in their one-dimensional form, to predict output parameters of the thermosyphon and enable parametric and sensitivity analysis. The mathematical model structure is set up in a way that the least numerical cost and time is spent while the model accuracy is kept at acceptable level for the defined application. To provide experimental data for validation of the simulation model, the proposed thermosyphon was tested experimentally using a test set-up instrumented for this purpose. The simulation results are found to be in good agreement with the experimental data. The developed model and code are viable to be used as a simple and fast tool for modeling, design, and optimization of the thermosyphon as an element in a heat recovery module.  相似文献   

18.

The results of an experimental investigation of staggered tube bundle heat transfer to upward and downward moving vertical foam flow are presented in this article. It was determined that a dependency exists between tube bundle heat transfer intensity on foam volumetric void fraction, foam flow velocity and direction, and liquid drainage from foam. In addition to this, the influence of tube position of the bundle on heat transfer was investigated. Experimental results were summarized by criterion equations, which can be applied in the design of foam type heat exchangers.  相似文献   

19.
气体轴承是回热式热机的一项关键技术,它是利用气体代替润滑油作为润滑剂,在轴与轴承套之间构成气膜,是避免运动面与静止面直接接触的较为理想支撑元件.将间隙密封与气体轴承相结合,可以在实现密封的同时消除接触磨损.本文利用ANSYS Fluent对具有77 kW(声功)设计输出能力的活塞进行其气体轴承与间隙密封耦合特性的数值模...  相似文献   

20.
An experimental investigation has been carried out for turbulent flow through a tube with perforated strip inserts. Strips were of mild steels with circular holes of different diameters. Flow varies, with ranging Reynolds numbers from 15,000 to 47,000. Air velocity, tube wall temperatures, and pressure drops were measured for a plain and strip-inserted tube. The heat transfer coefficient and friction factor were found to be 2.80 times and 1.8 times, respectively, that of the plain tube. The heat transfer performance was evaluated and found to be 2.3 times that of the plain tube based on constant blower power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号