首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
随着高效预冷器在航天航空领域发挥越来越重要的作用,紧凑高效换热器的研究成为了人们关注的热点。本文基于紧凑微通道换热器的几何特征,针对矩形截面平行流道换热器内超临界压力低温流体(氢和氦)在大温差条件下的流动换热现象进行数值模拟研究。通道截面边长小于1 mm,热流体氦和冷流体氢的进出口温差均大于600 K。通道内流体换热系数在顺流和逆流条件下有不同的变化趋势,并出现峰值。换热量随着通道宽度的增大而增大,流动压降随着通道宽度的增大而减小。冷热流体逆流时换热量大,压降较小,但对换热器材料要求较高。  相似文献   

2.
随着高效预冷器在航天航空领域发挥越来越重要的作用,紧凑高效换热器的研究成为了人们关注的热点。本文基于紧凑微通道换热器的几何特征,针对矩形截面平行流道换热器内超临界压力低温流体(氢和氦)在大温差条件下的流动换热现象进行数值模拟研究。通道截面边长小于1 mm,热流体氦和冷流体氢的进出口温差均大于600 K。通道内流体换热系数在顺流和逆流条件下有不同的变化趋势,并出现峰值。换热量随着通道宽度的增大而增大,流动压降随着通道宽度的增大而减小。冷热流体逆流时换热量大,压降较小,但对换热器材料要求较高。  相似文献   

3.
K. Koyama  Y. Asako 《实验传热》2013,26(2):130-143
Heat transfer characteristics of a gas-to-gas counterflow microchannel heat exchanger have been experimentally investigated. Temperatures and pressures at inlets and outlets of the heat exchanger have been measured to obtain heat transfer rates and pressure drops. The heat transfer and the pressure drop characteristics are discussed. Since the partition wall of the heat exchanger is thick compared with the microchannel dimensions, a simple heat exchange model with constant wall temperature is proposed to predict the heat transfer rate. The predicted heat transfer rate using the constant wall temperature model agrees well with the experimental results.  相似文献   

4.
A novel microchannel heat sink with oval-shaped micro pin fins (MOPF) is proposed and the characteristics of fluid flow and heat transfer are studied numerically for Reynolds number (Re) ranging from 157 to 668. In order to study the influence of geometry on flow and heat transfer characteristics, three non-dimensional variables are defined, such as the fin axial length ratio (α), width ratio (β), and height ratio (γ). The thermal enhancement factor (η) is adopted as an evaluation criterion to evaluate the best comprehensive thermal-hydraulic performance of MOPF. Results indicate that the oval-shaped pin fins in the microchannel can effectively prevent the rise of heat surface temperature along the flow direction, which improves the temperature distribution uniformity. In addition, results show that for the studied Reynolds number range and microchannel geometries in this paper, the thermal enhancement factor η increases firstly and then decreases with the increase of α and β. In addition, except for Re = 157, η decreases first and then increases with the increase of the fin height ratio γ. The thermal enhancement factor for MOPF with α = 4, β = 0.3, and γ = 0.5 achieves 1.56 at Re = 668. The results can provide a theoretical basis for the design of a microchannel heat exchanger.  相似文献   

5.
水是微通道流动沸腾常用的换热工质,由于其饱和温度较大,目前的沸腾实验大多采用制冷剂替代.然而,水和制冷剂在物性参数上依然具有较大差异,应用于制冷剂的换热公式并不一定能有效应用于水.因此,本文收集1084个工质为水和1002个工质为制冷剂的实验数据,比较两者在无量纲数上的差异,并选取6个常用换热公式,比较其应用于两者的预...  相似文献   

6.
L.P. Pang  J. Cheng 《实验传热》2015,28(4):317-327
Cooling technology is facing new challenges with the increase of electronic equipment power onboard aircraft. The traditional heat sink based on high-altitude bleed air does not satisfy this increase of cooling demands. In this article, an air/air-type skin heat exchanger is studied for cooling aircraft electronic equipment. It uses outside high-altitude cold air rather than bleed air as a heat sink. This cooling technology can effectively remove the heat load of high-power electronic devices without greatly increasing aircraft performance penalty. To assess its high-altitude heat transfer performance, an experimental prototype was designed and made. Some experiments were conducted on a ground experimental test. The heat transfer criteria formulas were obtained for both the side air in the skin heat exchanger and its convective heat transfer coefficients. Based on these experimental analyses, the heat transfer performances of the skin heat exchanger in a high-altitude cruise condition are deduced when it is assumed to be installed at an unfavorable position and a favorable position, separately. This work tries to provide a technical support for its future onboard application.  相似文献   

7.
An experimental investigation has been carried out to study the enhancement in heat transfer coefficient by inserting coiled wire around the outer surface of the inner tube of the double-pipe heat exchanger. Insulated wires, with a circular cross-section of 2 mm diameter, forming a coil of different pitches (p = 6, 12, and 20 mm), were used as turbulators. The investigation is performed for turbulent water flow in a double-pipe heat exchanger with cold water in the annulus space for both parallel and counter flows. The experiments were performed for Reynolds numbers ranging from 4,000 to 14,000. The experimental results reveal that the use of coiled circular wires leads to a considerable increase in heat transfer coefficients compared with a smooth wall tube for both parallel and counter water flows. The mean Nusselt number increases with Reynolds number and pitch. The convective heat transfer coefficient for a turbulent water flow increases for all coiled wire pitches, with the highest enhancement of about 450% for counter flow and 400% for the parallel flow. New correlations for mean relative Nusselt numbers at different coiled wire pitches are provided.  相似文献   

8.
本文针对电动汽车空调热泵系统的室内微通道换热器制热性能进行了研究.首先对换热器的流程排布进行了优化分析,得到四流程12-13-13-12模型性能最优.在优化分析的基础上,实验研究了室内换热器扁管横竖布置方式对单体及系统制热性能的影响.结果发现在单体实验中,扁管竖置布置时的内部制冷剂分布均匀度远好于扁管横置布置,其换热量与出风温度比扁管横置布置分别提高了11.2%~16.5%与6.3%~8.4%.系统制热实验结果表明,扁管横置布置的制冷剂分布均匀度仍小于扁管竖置布置,且其受压缩机转速影响较大.而当扁管竖置布置时,制冷剂分布均匀度随着压缩机转速增大而减小.而随着室外环境温度的降低,扁管竖置布置的优势减弱。  相似文献   

9.
本文针对普通住宅房间设计了一台新型平板式热管换热器,该换热器结构紧凑、体积小巧。为研究该换热器的使用条件,本文开展了不同工质(R113、R141b以及这两种工质的混合物)对该热管换热器换热效率影响的实验研究。整个实验在夏季工况下进行,热管真空度为1×10~(-3)Pa,充液量(灌入热管换热器内的工质体积与热管换热器体积之比)为1/3。实验结果表明:该热管换热器热回收效率较高。在整个风量范围内,R141b作为工质的热管换热器换热效果最好,最高效率达到了58.2%。  相似文献   

10.
The present work has been conducted to investigate the effect of coupling twisted tapes on heat transfer enhancement in a heat exchanger. The effects of (1) twisted tape orientation (co-coupling twisted tapes or counter-coupling twisted tapes), (2) width ratio, and (3) twist ratio were also examined. Results of coupling twisted tapes were also compared to those of a typical twisted tape. Experimental results showed that the use of counter-coupling twisted tapes resulted in higher heat transfer, friction loss, and thermal performance factor than that of co-coupling twisted tapes and typical twisted tapes. Thermal performance factor increased as twist ratio and Reynolds number decreased while width ratio increased.  相似文献   

11.
本文对自制微管换热器的流动与传热性能进行了实验研究。提出了微细圆管换热器管内单相强制对流换热努摩尔数准则式,并与已有相关文献提出的关联式做了对比,结果表明:微管管内换热系数比常规尺度计算公式预测值要高,同时本文分析了微细管内的压力降、摩擦阻力系数f随雷诺数的关系。研究表明微管管内压降、摩擦系数都比常规尺度预测值要高。  相似文献   

12.
WCE算法优化换热网络时,固定投资费用的存在易造成小负荷换热单元难以产生和保留,使部分尚未完全进化的结构过早被淘汰。本文建立一种固定投资费用的松弛处理方法,将固定投资费用与换热单元热负荷进行因变处理,根据换热单元热负荷的大小实时调整优化过程中的松弛力度,引导并促进小负荷换热单元的顺利产生和进化,从而增强换热网络的结构进化能力。将松弛策略应用于9SP和15SP算例,验证松弛策略促进结构进化的有效性,提升优化质量,获得的最优结果(2 903 528 $ ·a-1、5 115 061 $ ·a-1)优于文献结果。  相似文献   

13.
This article experimentally and numerically analyzes the effect of turbulators with different geometries (Type I, Type II, Type III, and Type IV) located at the inlet of the inner pipe in a concentric-type heat exchanger. Experiments were performed at parallel-flow conditions in the same and opposite directions to investigate the impact of manufactured turbulators on heat transfer and pressure drop. In the numerical study, ANSYS 12.0 Fluent code program was used, and basic protection equations were solved in the steady-state, three-dimensional, and turbulence-flow conditions. Results were obtained from numerical analysis conducted at different flow values of air (7, 8, 9, 10, 11, and 12 m3/h). The distribution of temperature, velocity, and pressure was demonstrated as a result of numerical analyses. Experimental and numerical results were compared, and it was observed that they were in conformity with each other. When the data obtained from the analyses were examined, the highest heat transfer, pressure drop, and friction factor increase were detected to be in the Type IV turbulator.  相似文献   

14.
针对聚光光伏(CPV)电池高热流密度散热问题,本文提出了射流冲击与分形微通道散热相结合的解决方案,对其流动和换热进行了模拟.首先对分形微通道的分形级数进行分析,四级相比三级分形微通道换热系数只增加了4.62%,压降却升高了54.37%;接着对管道截面形状进行优化,对圆形截面,方形渐缩截面和扁管截面内流体的流动进行了模拟,结果表明在换热量相近的情况下,扁管拥有最低的压降;随后对比分叉处倒圆角、倒角和Y形三种布置形状,结果表明Y形布置有效地减少了内部流体的涡旋区,能够在牺牲较少的换热面积的条件下,将压降降低85.51%.最后在相同水力直径条件下研究单个喷嘴、均匀喷嘴阵列、非均匀喷嘴阵列射流冲击分形微通道的换热性能,模拟结果表明,非均匀喷嘴阵列分形微通道拥有最佳的换热性能,且压降降低了25.99%.  相似文献   

15.
低品位烟气余热回收过程存在冷凝现象,烟气的放热过程分为显热、潜热两部分。冷凝时,局部热流率和熵产率明显增大;增加水蒸气质量分数、冷却水质量流量和降低烟气入口温度都会导致烟气提前冷凝;存在最优冷却水质量流量使得热回收过程熵产数最小。另外,提出热回收效率评价烟气热回收程度,该指标受冷凝的影响很大。随着烟气中蒸汽质量分数的增加,冷凝过程的影响明显增强,因此,在低品位烟气的全热回收中必须考虑潜热的影响。  相似文献   

16.
Numerical simulation of heat transfer in a high aspect ratio rectangular microchannel with heat sinks has been conducted, similar to an experimental study. Three channel heights measuring 0.3 mm, 0.6 mm and 1 mm are considered and the Reynolds number varies from 300 to 2360, based on the hydraulic diameter. Simulation starts with the validation study on the Nusselt number and the Poiseuille number variations along the channel streamwise direction. It is found that the predicted Nusselt number has shown very good agreement with the theoretical estimation, but some discrepancies are noted in the Poiseuille number comparison. This observation however is in consistent with conclusions made by other researchers for the same flow problem. Simulation continues on the evaluation of heat transfer characteristics, namely the friction factor and the thermal resistance. It is found that noticeable scaling effect happens at small channel height of 0.3 mm and the predicted friction factor agrees fairly well with an experimental based correlation. Present simulation further reveals that the thermal resistance is low at small channel height, indicating that the heat transfer performance can be enhanced with the decrease of the channel height.  相似文献   

17.
The main scope of this article paper is to experimentally clarify the effects of outer-tube and inner-tube corrugations on thermal and frictional characteristics in a horizontal double-pipe heat exchanger. Nusselt number, friction factor, and thermal performance factor are evaluated for new various arrangements of convex and concave corrugated tubes. Smooth tubes were corrugated by means of a special machine. Findings indicate that the arrangement type of corrugated tubes has a significant effect on the mentioned parameters. The best performance was obtained for a heat exchanger made of a concave corrugated outer tube and a convex corrugated inner tube.  相似文献   

18.
In this work, a double-layered microchannel heat exchanger is designed for investigation on gas-to-gas heat transfer. The micro-device contains 133 parallel microchannels machined into a polished polyether ether ketone plate for both the hot side and cold side. The microchannels are 200 μm high, 200 μm wide, and 39.8 mm long. The design of the micro-device allows tests with partition foils in different materials and of flexible thickness. A test rig is developed with the integration of customized pressure and temperature sensors for in situ measurements. Experimental tests on the counter-flow micro heat exchanger have been carried out for five different partition foils and various mass flow rates. The experimental results, in terms of pressure drop, heat transfer coefficients, and heat exchanger effectiveness are discussed and compared with the predictions of the classic theory for conventionally sized heat exchangers.  相似文献   

19.
大功率半导体激光器叠层无氧铜微通道热沉   总被引:5,自引:4,他引:5       下载免费PDF全文
刘云  廖新胜  秦丽  王立军 《发光学报》2005,26(1):109-114
建立了叠层无氧铜微通道热沉的散热模型,通过理论计算和近似分析,优化了微通道热沉的结构参数;在t=200μm, ωc=60μm, ωf=100μm,p=2. 02×106 Pa时,可获得最小热沉热阻Rthm =4. 205×10-3 K·cm2 /W。根据优化结果,考虑微通道取向对液压降的影响,设计了一种新型大功率半导体激光器叠阵用五层结构叠层无氧铜微通道热沉,并结合实际工艺制备了无氧铜微通道热沉。在实际工作中,优化结果往往要跟实际工艺相结合,如优化所得的水压降为 2 02×106 Pa,这在实际工艺中较难实现。但在热沉实际工作的水压降条件下,热阻为 4. 982×10-3 K·cm2 /W,它能满足高功率激光器叠阵的需要。  相似文献   

20.
根据某1 t/h燃煤工业锅炉空气预热器的热力参数,设计并搭建了一套颗粒帘空气预热器模拟实验系统,研究了不同进气温度Tg0(150~300℃)、进气速度Vg0(0.9~1.5m/s)、颗粒帘进口厚度b0 (60~180 mm)、颗粒粒径dp(150~212μm)以及不同颗粒质量流量ms (550~2150 g/s)工况条件下热空气与进口温度tp0=20℃的硅砂颗粒帘间的换热特性。结果表明:影响颗粒帘换热器中气粒两相换热特性因素的重要性次序为进气温度、进气速度、颗粒质量流量、颗粒粒径、颗粒帘进口厚度;换热端差最低可至4.5℃,最大可达87℃;颗粒帘及颗粒帘出口气流的温度沿颗粒下落方向在前期上升迅速(186~475℃/m)而后期上升比较缓慢(60~108℃/m),并且在0~0.5 m和0.5~1.0 m的高度范围可分别用线性和对数方程来描述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号