首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
轴流压气机转子尖区三维紊流特性   总被引:8,自引:3,他引:5  
用三维激光多普勒测速系统测量研究了低速大尺寸单级压气机设计状态转子内尖区三维紊流流场.结果表明,设计状态下叶尖泄漏涡是造成压气机转子尖部素流脉动的主要因素,其造成的高素流区沿流向逐渐扩大,并缓慢向通道中部和低叶高方向移动,紊流强度值随旋涡的增强而增大.在泄漏涡影响区域中,径向脉动水平最高,轴向和切向脉动水平相近,三个剪切应力中,轴向一径向最大,切向一径向次之,轴向一切向最小.在叶片通道后段,泄漏涡发生破裂,导致更强、更大范围的紊流脉动,剪切应力中切向-径向应力较高.在叶尖吸力面角区后半部的角涡,紊流强度大,剪切应力也大,尤其是切向-径向剪切应力.  相似文献   

2.
采用正交实验方法考察了具有不同结构参数的三维周期波纹流道中的流体性能,并采用Webb评价方法对其进行性能评价。比较了不同波纹宽度的波纹流道的阻力因子ef、传热因子eNu和能效因子η的值,结果表明三者都随Re的增大而增大,波纹宽度最小时能效因子η最大。流体在波纹流道中垂直于主流方向的横截面上产生二次流,随着Re增大,二次流增强,阻力增大,温度边界层减薄,温度等值线分布变得不均匀,传热增强。采用拉格朗日粒子跟踪技术分析了不同Re下,流体粒子在波纹流道内的运动轨迹,绘制了不同周期出口流体粒子的庞加莱截面图,结果表明流体粒子在波纹流道中被反复拉伸和折叠,增加了流体粒子的接触面积,提高混合效率,强化了传热。  相似文献   

3.
This paper presents experimental data concerning the flow and noise generated by a sharp-edged flat plate at low-to-moderate Reynolds number (Reynolds number based on chord of 2.0 × 10(5) to 5.0 × 10(5)). The data are used to evaluate a variety of semi-empirical trailing edge noise prediction methods. All were found to under-predict noise at lower frequencies. Examination of the velocity spectra in the near wake reveals that there are energetic velocity fluctuations at low frequency about the trailing edge. A semi-empirical model of the surface pressure spectrum is derived for predicting the trailing edge noise at low-to-moderate Reynolds number.  相似文献   

4.
用三维激光多普勒测速系统测量研究低速大尺寸单级压气机设计状态转子内尖区流场.结果表明,泄漏流在气流一进入转子叶片通道就开始发生,发生于前半弦长,其诱导形成的泄漏涡约在30%弦长处达到最强,随后逐渐衰减,其涡核顺下游慢慢向压力面方向和低时高方向移动,涡核在转子出口移至通道中部.泄漏涡影响区域沿流向逐渐扩大,并向压力面方向和低叶高方向移动.设计状态叶尖泄漏涡在转子尖区流动中起主要作用,是造成尖部流动阻塞的主要因素.  相似文献   

5.
This paper reports on an experimental investigation of large-scale flowfield instabilities in a pump rotor and the process of noise generation by these instabilities. Measurements of the fluctuating components of velocity and surface pressure were made with hot-wire probes and surface mounted pressure transducers on a seven bladed back swept centrifugal water pump impeller operating with air as the working fluid. The impeller was operated without a volute or scroll diffuser, thereby eliminating any sound generation from pressure fluctuations on the volute cutoff. Thus the study focused on flow field and noise components other than the blade passage frequency (and its harmonics). The primary goal of the study was to provide fundamental information on the unsteady flow processes, particularly those associated with the noise generation in the device. It was further anticipated that detailed flow measurements would be useful for the validation of future computational simulations.The measured data at the discharge show a jet-wake type of flow pattern which results in a strong vorticity field. The flow with high velocity found on the pressure side of the impeller tends to move to the low-pressure region present at the suction side of the passage as a form of roll-up around the blade trailing edge. This motion causes an unsteady flow separation at the suction side of the blade and consequently disturbs the flow in the adjacent passage. By interacting with the impeller blades near the trailing edges, this instability flow causes a periodic pressure fluctuation on the blade surface and generates noise by a trailing edge generation mechanism. The spectrum of surface pressure measured at the trailing edge of each blade reveals a cluster of peaks which were identified with azimuthal mode numbers. The correlation between the acoustic farfield pressure and the surface pressure on the impeller blade has proven that the azimuthal modes synchronized with the number of impeller blades generate noise much more efficiently than the other modes. The paper also clarifies the correlation between unsteady flowfield measurements, in both impeller and laboratory co-ordinates, with the radiated noise properties. Thus some light is shed on the noise generation mechanisms of this particular device.  相似文献   

6.
Numerical investigations on thermo-hydraulic performance and mechanisms of flow and heat transfer in a square channel heat exchanger inserted with right triangular wavy surfaces are examined. The influence of the flow attack angles (30°, 45° and 60°) is investigated for laminar flow (Re = 100–2000). The configurations of the right triangular wavy surfaces are varied as inclined and V-shaped wavy surfaces (the pointing of V-tip with downstream and upstream called “V-downstream” and “V-upstream”, respectively). The insertions of the wavy surfaces in the channel heat exchanger are divided into two types: middle and diagonal insertions. The computational results reveal that the maximum thermal enhancement factor, TEF, is around 2.31 for the 30° V-downstream wavy surface with diagonal insertion at Re = 2000.  相似文献   

7.
叶片尾缘内冷通道中最佳强化传热的针肋排列结构研究   总被引:3,自引:1,他引:2  
本文应用湍流模型对涡轮叶片尾缘针肋通道的换热与流动进行了二维数值模拟研究。为了研究通道内针肋排列 方式对换热与流动的影响,对三种不同的针肋排列方式的通道进行了数值模拟计算。比较了顺排和叉排的区别,并提出了 一种沿流向叉排的针肋排列方式,且对各种排列的传热和阻力特性进行了综合分析和比较。  相似文献   

8.
为深化缘线匹配对叶轮机非定常流动影响的认识,本文以关注尾迹撞击叶表展向轨迹为出发点,围绕缘线匹配对叶轮机非定常流动及性能影响进行了初步数值探索.研究表明:不同缘线匹配时叶片整体性能参数具有不同的脉动水平;给定缘线匹配下,整体性能参数脉动幅值随工况几乎不变或变化很缓;在设计点为达到降低某种脉动目的而实施的缘线匹配在非设计点同样有效;尽管微弱,数值模拟中还发现缘线匹配对上游尾迹随流掺混产生影响;缘线匹配严重影响时均相关项量值水平,尤其在叶尖、叶根和前缘附近.  相似文献   

9.
轴流压气机小流量状态转子叶尖泄漏涡的三维流动   总被引:3,自引:0,他引:3  
用三维激光多普勒测速系统测量了低速大尺寸单级压气机小流量状态转子内尖区三维紊流流场。小流量状态下叶尖泄漏涡产生于更靠近转子叶片前缘,旋涡强度大,发展迅速,在转子内距离前缘约20%轴向弦长的截面达到最强,在80%轴向弦长附近发生破裂。泄漏涡是造成转子内尖区流动阻塞和紊流脉动的主要因素之一。在约75%弦长的轴向截面,吸力面角区发生旋涡流动,造成较强的流动阻塞和紊流脉动。  相似文献   

10.
In recent years, there has been an increase in the number of research papers on plasma and its use in active flow control applications. The main objective of this study is to assess the plasma actuator's position on a NACA0015 airfoil in terms of aerodynamic forces. In addition, optimization of the plasma actuator's position and its configuration are studied in order to identify the optimum configuration for improvement in lift coefficient. The experiments are conducted in an open-suction-type wind tunnel at Reynolds numbers of 48,000, 75,000, and 100,000. The plasma actuators are mounted on various positions (x/C) starting from the leading edge to trailing edge of the airfoil. The experimental results on aerodynamic force measurement are presented to illustrate the increasing lift effect of the generated plasma. It is also shown that the plasma actuators used as an active flow control device appears to shift the stall angle of the airfoil. The results of the experimental study suggest that the energy efficiency of airborne systems can be improved with the use of plasma actuators due to its increasing lift coefficient effect. This result becomes a vital finding considering that the same flight can be achieved with less fuel and less amount of environmental pollution for the same distance of journey. It is also worth mentioning that increasing lift effect would mean taking off from a shorter runway or allowing the airborne vehicle with the ability to fly with additional payload.  相似文献   

11.
The main characteristics of an acoustic resonance developing in a channel flow past flat bluff bodies with different trailing-edge shapes have been experimentally examined. It is shown that the range of flow velocities at which the resonance is observed is wider for a model with sharp trailing edge compared to a plate with blunt trailing edge.  相似文献   

12.
采用曲线坐标系下压力与速度耦合的SIMPLER算法,数值研究了一种紧凑换热器中波纹通道内周期性充分发展的层流流动与换热情况,流动Re数的范围为100~1100,Pr数为0.7.计算考察了不同波纹高度、波纹间距对流动与换热的影响,并对模型参数进行了性能评价.计算结果表明,整体Nu数及fRe数随着流动Re数的增加而增加.随着波纹高度的增加或波纹间距的减小,换热增强,特别是在高Re数下波纹高度的增加更加强化换热.最佳波纹高度和间距分别为1.15 mm和13 mm.  相似文献   

13.

Abstract  

In this paper, mixing between the fluid from a primary planar jet and two surrounding secondary planar jets which are pulsated out-of-phase is studied experimentally. Solenoid values are used to control the flow injection into the mixing channel with pulse-width modulation. The experiments are conducted using water at a range of pulsation frequency, two duty cycles (25 and 50%) and a mean Reynolds number between 100 and 250. The flow rate ratio between the primary and secondary flow is kept as unity. Both particle-image velocimetry and planar laser-induced fluorescence techniques are used to visualise the flow patterns and to quantify the mixing degree in the mixing channel. This mixing enhancement method is shown to be effective with a mixing degree as high as 0.9 achieved at a mean Reynolds number of about 166. A combination of different mixing mechanisms is found at play, including sequential segmentation, shearing and stretching, vortex entrainment and breakup. At a given Reynolds number, an optimal frequency exists which scales approximately with a Strouhal number (St = fh/U) of unity. Furthermore, at a given mean Reynolds number a lower duty cycle is found to produce a better mixing due to a resultant higher instantaneous Reynolds number in the jet flow.  相似文献   

14.
Far field noise data indicated that for practical upper surface blown flap configurations, the noise radiated below the flap is dominated by the noise generated in the vicinity of the trailing edge. The sound field caused by turbulent mixing in the trailing edge wake is investigated experimentally and theoretically. Hot wire measurements were made downstream of the trailing edge to determine the gross turbulent mixing characteristics of the flow. This information is used as input to a theoretical analysis of the sound field. Favorable agreement is found between predicted and measured far field noise directivity at various frequencies and noise power spectra in various directions.  相似文献   

15.
In the present work, the regimes of the flow and mixing of fluids in a T-shaped micromixer in the range of the Reynolds numbers from 1 to 1000 are investigated systematically with the aid of numerical modeling. The flow and mixing regimes are shown to alter substantially with increasing Reynolds numbers. Five different flow regimes have been identified in the total. The dependencies of the friction coefficient and mixing efficiency on the Reynolds number are obtained. A sharp increase in the mixing efficiency at a flow transition from the symmetric to asymmetric steady regime is shown. On the other hand, the mixing efficiency slightly drops in the laminar-turbulent transition region. A substantial influence of the slip presence on walls on flow structure in the channel and mixing efficiency has been revealed.  相似文献   

16.
We report experiments on mixing of a passively advected fluorescent dye in a low Reynolds number flow in a microscopic channel. The channel is a chain of repeating segments with a custom designed profile that generates a steady three-dimensional flow with stretching and folding, and chaotic mixing. A few statistical characteristics of mixing in the flow are studied and are all found to agree with theoretical and experimental results for the flows in the Batchelor regime of mixing that are chaotic in time. The proposed microchannel provides fast and efficient mixing and is simple to fabricate.  相似文献   

17.
采用曲线坐标系下压力与速度耦合的SIMPLER算法,数值研究了波纹通道内脉动流动与换热情况,流动Re数的范围为5~500,Pr数为0.7.计算考察了脉动参数如脉动频率和振幅对通道内强化传热和压力损失的影响.研究结果表明,流动阻力特性呈周期性余弦规律变化,换热Nu数呈正弦规律变化;频率、振幅的增大,使得阻力脉动幅度增大.受入口脉动流的影响,通道内的旋涡发生周期性的脱落、增长和迁移,从而增强了流体之间的扰动和掺混,强化了传热;传热的强化效果随着振幅的增大而增强,但在特定入口脉动流下,相同振幅不同频率下的强化效果几乎一致.  相似文献   

18.
A flow control study of a supersonic mixing layer via NPLS   总被引:1,自引:0,他引:1  
The flow control of a supersonic mixing layer was studied in a supersonic mixing layer wind tunnel with convective Mach number (Mc) at 0.5. The passive control of the mixing layer was achieved by perturbation tapes on the trailing edge of the splitter plate. The control effects of 2D and 3D perturbation tapes with different sizes were compared. The mixing layer was visualized via NPLS, and the transient fine structures were identifiable in NPLS images, which were used to analyze the effects of flow control. The results show that the 2D tapes can enhance the 2D characteristic of the mixing layer, delaying mixing layer transition; and the 3D tapes can enhance the 3D characteristic of the mixing layer, advancing mixing layer transition. 3D structures of the mixing layer were visualized, and the H-type Λ vortexes were found with 3D tapes control.  相似文献   

19.
Compressible turbulent channel flow over a wavy surface is investigated by direct numerical simulations using high-resolution finite difference schemes. The Reynolds number considered in the present paper is 3380 based on the bulk velocity, the channel half-width and the kinetic viscosity at the wall. Four test cases are simulated and analysed at Mam = 0.33, 0.8, 1.2, 1.5 based on the bulk velocity and the speed of sound at the wall. We mainly focus on the curvature and the Mach number effects on the compressible turbulent flows. Numerical results show that although the wavy wall has effects on the mean and fluctuation quantities, log law still exists in the distribution of the wave-averaged streamwise velocity if the roughness effects are taken into consideration in the scaling of it. Near-wall streaks are broken by the wavy surface and near-wall quasi-streamwise vortices mostly begin at the upslope of the wave and pass over the crest of it. The wavy wall makes the turbulence more active and the flow easier to be blended. From the viewpoint of turbulent kinetic budgets, curvature effects strengthen both the diffusion terms and the dissipation terms. At the same time, they change the properties of the compressibility-related terms and promote more inner energy transferring into turbulent kinetic energy. As the Mach number increases, the reattachment of the mean flow is delayed, which indicates the mean separation bubble becomes larger. Concerning the near-wall coherent structures, the vortices are more sparsely distributed with the increasing of the Mach number. For the supersonic cases, shock waves appear. Though they have little effects on the mean turbulent quantities, they change the structures of the flow fields and induce local separations at the upper wall of the channel.  相似文献   

20.
The presence of a cavity in the pressure surface of an airfoil has been found via experiment to play a role in the production of airfoil tones, which was attributed to the presence of an acoustic feedback loop. The cavity length was sufficiently small that cavity oscillation modes did not occur for most of the investigated chord-based Reynolds number range of 70,000–320,000. The airfoil tonal noise frequencies varied as the position of the cavity was moved along a parallel section at the airfoil's maximum thickness: specifically, for a given velocity, the frequency spacing of the tones was inversely proportional to the geometric distance between the cavity and the trailing edge. The boundary layer instability waves considered responsible for the airfoil tones were only detected downstream of the cavity. This may be the first experimental verification of these aspects of the feedback loop model for airfoil tonal noise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号