首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 894 毫秒
1.
The convective heat transfer coefficients resulting from a slot jet on a plane surface have been estimated by using the real measured temperatures in the plate and inverse method. In this study, the inverse method used the conjugate gradient method with an adjoint equation. Distributions of the local heat transfer coefficient on the impingement surface were determined for various Re and H/Dh. It was found the heat transfer coefficients generally tended to decrease with increasing separation distance and to increase with an increase in Reynolds number. This presented method is able to estimate the variation of the local Nusselt number with time.  相似文献   

2.
A computational study is carried out to assess the suitability of various RANS based turbulence models for slot jet impingement on flat and ribbed surfaces with various values of Reynolds number and jet to plate spacing. The com-puted results are compared with the reported experimental data. It was observed that none of the turbulence models considered predicted the heat transfer data accurately. However, some models predicted the experimental data with good trends, e.g., secondary peak and several spikes in Nusselt number for ribbed surface, with a precise computation of the stagnation point Nusselt number. Further, the effects of slot width, rib pitch and jet to ribbed surface spacing were investigated for jet impingement on a ribbed surface. It was observed that the local Nusselt number increased with slot width and rib to plate spacing. It was also observed that increasing Reynolds number had a positive effect on the local heat transfer. With increasing rib pitch the local Nusselt number increased near the stagnation zone but de-creased downstream. The observed flow pattern was different for jet impingement on a ribbed surface than that on a flat surface.  相似文献   

3.
J. Pellé  S. Harmand 《实验传热》2013,26(4):337-358
Abstract

This article presents an experimental study of the local heat transfer on the rotor surface in a discoidal rotor-stator system air-gap in which an air jet comes through the stator and impinges the rotor. To determine the surface temperatures, measurements were taken on the rotor, using an experimental technique based on infrared thermography. A thermal balance was used to identify the local convective heat transfer coefficient. The influence of the axial Reynolds number Re j and the rotational Reynolds number Re was measured and compared with the data available in the literature. Local convective heat transfer coefficients were obtained for a dimensionless space between the two disks G = 0.01, for Re j between 0 and 41,666, and for Re between 20,000 and 516,000. The flow data found in the literature can be used to explain the heat transfers in this small space configuration. In fact, the rotating disk can be divided into two influence zones: one dominated by the air jet near the center of the rotor and one affected by both the air jet and rotation. Heat transfers with non zero impinging jets appear to be continuously improved compared to those with no jets, even if the two influence zones mentioned previously are situated differently.  相似文献   

4.
本文运用数值计算的方法对具有初始横流的阵列射流在不同的排列方式、冲击间距和横流/射流质量流量比下 的流动换热进行了三维数值研究,并采用热色液晶测试技术对阵列射流冲击的冷却表面温度分布进行了试验研究。获得了 每一股射流的冲击冷却局部对流换热系数分布的特征,研究结果表明本文的计算结果与实验特征是基本吻合的。  相似文献   

5.

Experiments on triangular and rectangular array jet impingement and single-phase spray cooling have been performed to determine the effect of both cooling techniques on heat transfer coefficient (h) and the coolant mass flux required for a given cooling load. Experiments were performed with circular orifices and nozzles for different H/D values from 1.5 to 26 and Reynolds number range of 219 to 837, which is quite lower than the ranges employed in widely used correlations. The coolant used was polyalphaolefin. The experiments simulated the boundary condition produced at the surface of the stator of a high power low-density generator or motor. For the custom fabricated orifices, commercial nozzles, and conditions used in this study, both cooling configurations showed enhancement of heat transfer coefficient as H/D increases to a certain limit after which it starts to decrease. The heat transfer coefficient always increases with Reynolds number. In keeping with previous studies, single-phase spray cooling technique can provide the same heat transfer coefficient as jets at a slightly lower mass flux, but with much higher-pressure head. Special Nud correlations that account for the range of parameters and coolant studied in this work are derived.  相似文献   

6.
本文采用SST湍流模型模拟了类前缘通道内蒸汽射流阵列冲击冷却的流动与传热特性,分析了雷诺数(Re=10000~50000)、孔径比(d/H=0.5~0.9)和孔间距比(S/H=2~6)对流动及传热性能的影响规律,得到了相应的传热和摩擦关联式。结果表明:在不同雷诺数下,d/H从0.5到0.9变化时,通道压力损失系数降低了76%~79%,靶面平均努塞尔数降低了45%~49%;S/H从2增至6时,通道压力损失系数增加了1.64~1.92倍,靶面平均努塞尔数增加了54%~64%;增大d/H、减小S/H可有效提高类前缘通道蒸汽冲击冷却的综合热力系数。本文研究结果可为未来先进燃气轮机高温涡轮叶片蒸汽冷却结构的设计提供参考和借鉴。  相似文献   

7.
Abstract

The effect of streamwise jet-to-jet spacing on local heat transfer distribution due to an in-line rectangular array of confined multiple circular air jets impinging on a surface parallel to the jet plate are experimentally studied. The length-to-diameter ratio of nozzles of the jet plate is 1.0. The flow, after impingement, is constrained to exit in two opposite directions from the confined passage formed between the jet plate and target plate. Mean jet Reynolds numbers based on the nozzle exit diameter (d) covered are 3,000, 5,000, 7,500, and 10,000; jet-to-plate distances studied are d, 2d, and 3d. Streamwise jet-to-jet distances of 3d, 4d, and 5d, and a constant spanwise pitch of 4d, are considered. The jet plates have ten spanwise rows in the streamwise direction and six jets in each spanwise row. The flat heat transfer surface is made of thin stainless-steel metal foil. Local temperature distribution on a target plate is measured using a thermal infrared camera. Wall static pressures in the streamwise direction are measured midway between the spanwise jets to estimate cross-flow velocities and individual jet velocities. The streamwise distribution of the jet flow and the cross flow is found to be least influenced by the streamwise pitch variation for the range of parameters considered during the present study. Heat transfer characteristics are explained partially on the basis of flow distribution. The cooling performance, based on the strip-averaged Nusselt number per unit mass flow rate of coolant per unit area of cooled surface, indicates deterioration for lower streamwise pitch and higher jet-to-plate distance.  相似文献   

8.
C. Saha  R. Ganguly  A. Datta 《实验传热》2013,26(3):169-187
Flame impingement heat transfer has widespread industrial and domestic applications and attaining high heat flux as well as low emission of pollutants is the important prerequisite for all such applications. In this article, the heat transfer and emission characteristics of a laminar flame jet impinging on a flat target plate have been investigated experimentally. The effect of reactant jet Reynolds number, equivalence ratio and burner to plate separation distance on the average heat flux, and emissions of CO and NOx are studied using methane and ethylene fuels. Results indicate that the heat flux is maximized under certain operating conditions of jet Re, equivalence ratio, and separation distance between the burner and the target. Fuel type is found to have an effect on the heat transfer rate because of the varying luminosity of the flame with different fuels. Operating regimes that produce lower emission of pollutants are also identified. Findings of this article have direct industrial relevance to flame impingement heat transfer applications that have small target plate-to-burner port diameter ratios.  相似文献   

9.
微射流阵列冷却热沉是利用射流冲击在驻点区能产生很薄的边界层来提高换热效率,本次研究设计的热沉是5层结构的模块式铜微射流阵列冷却热沉,以去离子水为工质对传热特性进行了实验研究.结果表明,采用微射流阵列冷却不仅能通过增加驻点数目来强化换热,而且能有效地降低换热表面的温差.热沉的热阻会随着泵功的增加而降低;随着泵功的不断提高,热阻变化趋于平缓.  相似文献   

10.
A global model is proposed for the heat transfer through a plane air jet which is used as a thermal seal of a case at temperatures higher than the ambient one. The model considers that forced convection predominates over the natural convection and uses an analogy between heat and mass transfers. The heat balance calculation is based on an estimation of the velocity and temperature profiles at returning slot of the jet. Hydrodynamically, the jet is assimilated to a free jet. Thermally, a new formulation for the temperature profile in the jet is proposed for the most general case whatever the temperatures at the blowing slot and on each side of the jet — room and case —. The predictions by the model are in good agreement with experimental results from the point of view of:
  • •- the changes in longitudinal and transversal temperature in the jet;
  • •- the flux exchanged between all compartments;
  • •- the energy consumption required to assure a given difference between the case temperature and the ambient one.
  相似文献   

11.

An experimental study has been conducted to find the heat transfer characteristics of methane/air flames impinging normally to a flat surface using different burner geometries. The burners used were of nozzle, tube, and orifice type each with a diameter of 10 mm. Due to different exit velocity profiles, the flame structures were different in each case. Because of nearly flat velocity profile, the flame spread was more in case of orifice and nozzle burners as compared to tube burner. Effects of varying the value of Reynolds number (600–2500), equivalence ratio (0.8–1.5) and dimensionless separation distance (0.7–8) on heat transfer characteristics on the flat plate have been investigated for the tube burner. Different flame shapes were observed for different impingement conditions. It has been observed that the heat transfer characteristics were intimately related to flame shapes. Heat transfer characteristics were discussed for the cases when the flame inner reaction cone was far away, just touched, and was intercepted by the plate. Negative heat fluxes at the stagnation point were observed when the inner reaction cone was intercepted by the plate due to impingement of cool un-burnt mixture directly on the surface. Different heat transfer characteristics were observed for different burner geometries with similar operating conditions. In case of tube burner, the maximum heat flux is around the stagnation point and decay is faster in the radial direction. In case of nozzle and orifice burner, the heat transfer distribution is more uniform over the surface.  相似文献   

12.
In the current study, a hot moving steel plate of 6 mm thickness with an initial temperature of 900°C has been considered for jet impingement cooling. The experiment has been designed with the help of Design of Expert software to optimize the process parameters based on the highest cooling rate. The various subsurface transient temperature histories have been measured during the cooling process. The surface heat flux and surface temperature were calculated with the help of a commercial inverse heat transfer solver called INTEMP. The experimental result has been presented in terms of cooling rate and critical heat flux.  相似文献   

13.
旋转射流冲击换热液晶显示实验研究   总被引:7,自引:0,他引:7  
采用热色液晶测温技术对以二氧化碳为工质的稳态射流冲击换热和管内插入扭转带方式的旋转射流冲击换热进行了实验研究。与普通射流相比,旋转射流导致驻点附近区域的换热趋于均匀化。其换热系数在大于某一半径之后高于普通射流,但在驻点附近相对较低。旋转射流对换热的此种影响随雷诺数的增大而减弱。  相似文献   

14.
气冷涡轮叶片传统热分析中热边界条件的影响   总被引:1,自引:0,他引:1  
以MarkII气冷涡轮叶片为研究对象,考察了换热系数分布对叶片外表面温度分布的影响。首先分别以温度和换热系数实验值作为热边界条件验证了固体导热计算方法和CFD程序的有效性,然后分析了6种典型热边界条件下的叶片外表面温度分布,并与实验值进行对比。由分析结果可知:叶片外表面温度与换热系数紧密关联,经验关联式(层流、湍流)条件下预测得到的温度偏差较大,当换热系数由能考虑边界层转捩影响的CFD计算得到时,预测得到的温度与实验值较为接近。  相似文献   

15.
H. Gül 《实验传热》2013,26(1):73-84

An experimental investigation was made to study heat transfer in a pipe which is oscillated about an axis that is parallel to, but offset from, the pipe axis. Air was used as working fluid. The experimental setup was designed so as to provide oscillating motion of a test pipe. The measurement systems were installed on the oscillating section. For both steady and oscillating flows, the bulk air temperature and wall temperature, pressure drop, and frequency were measured. The parameters for this study were chosen as Reynolds number from 5,000 to 20,000 and oscillating frequencies from 10 to 20 Hz. The variations of Nusselt number versus these parameters were determined and presented graphically. Heat transfer enhancement of 42% was achieved at constant pumping power for oscillatory flow.  相似文献   

16.
Abstract

Fluids in which nanometer-sized solid particles are suspended are called nanofluids. These fluids can be employed to increase the heat transfer rate in various applications. In this study, the convective heat transfer for Cu/water nanofluid through a circular tube was experimentally investigated. The flow was laminar, and constant wall temperature was used as thermal boundary condition. The Nusselt number of nanofluids for different nanoparticle concentrations, as well as various Peclet numbers, was obtained. Also, the rheological properties of the nanofluid for different volume fractions of nanoparticles were measured and compared with theoretical models. The results show that the heat transfer coefficient is enhanced by increasing the nanoparticle concentrations as well as the Peclet number.  相似文献   

17.
In this article, an experimental investigation is performed to measure the boiling heat transfer coefficient of water flow in a microchannel with a hydraulic diameter of 500 μm. Experimental tests are conducted with heat fluxes ranging from 100 to 400 kW/m2, vapor quality from 0 to 0.2, and mass fluxes of 200, 400, and 600 kg/m2s. Also, this study has modified the liquid Froude number to present a flow pattern transition toward an annular flow. Experimental results show that the flow boiling heat transfer coefficient is not dependent on mass flux and vapor quality but on heat flux to a certain degree. The measured heat transfer coefficient is compared with a few available correlations proposed for macroscales, and it is found that previous correlations have overestimated the flow boiling heat transfer coefficient for the test conditions considered in this work. This article proposes a new correlation model regarding the boiling heat transfer coefficient in mini- and microchannels using boiling number, Reynolds number, and modified Froude number.  相似文献   

18.
The aim of this research is to numerically and experimentally study the flow and heat transfer characteristics of in-line impinging jets in cross-flow. The jets from a row of round orifices are perpendicularly impinged on the inner surface of a rectangular wind tunnel at a short distance between the orifice plate and impinged surface (H) of 2D, where D is a diameter of the orifice. The jet velocity was fixed corresponding to Re = 13,400 for all experiments, and the cross-flow velocity was varied at three different velocity ratios (velocity ratio, jet velocity/cross-flow velocity) of 3, 5, and 7. The heat transfer characteristic was visualized using a thermochromic liquid crystal sheet, and the Nusselt number distribution was evaluated by an image processing technique. The flow pattern on the impinged surface was also visualized by an oil film technique. The numerical simulation was used to explore a flow interaction between the impinging jets and cross-flow. The results indicated that Nusselt number peak increased by the increasing cross-flow velocity for short jet-to-plate distance. For the range determined, the maximum local Nusselt number peak was obtained at VR = 3 as the consequence of high velocity and high turbulence kinetic energy of jet impingement.  相似文献   

19.
G. Arslan  N. Eskin 《实验传热》2015,28(5):430-445
In this study, condensation of pure refrigerant R134a vapor inside a smooth vertical tube was experimentally investigated. The test section was made of a copper tube with inside diameter of 7.52 mm and length of 1 m. Experimental tests were conducted for mass fluxes in the range of 20–175 kg/m2s with saturation pressure ranging between 5.8 and 7 bar. The effects of mass flux, saturation pressure, and temperature difference between the refrigerant and tube inner wall (ΔT) on the heat transfer performance were analyzed through experimental data. Obtained results showed that average condensation heat transfer coefficient decreases with increasing saturation pressure or temperature difference (ΔT). In addition, for the same temperature difference (ΔT), heat can be removed from the refrigerant at a higher rate at relatively low pressure values. Under the same operating conditions, it was shown that average condensation heat transfer coefficient increases as mass flux increases. Finally, the most widely used heat transfer coefficient correlations for condensation inside smooth tubes were analyzed through the experimental data. The best fit was obtained with Akers et al.'s (1959) correlation with an absolute mean deviation of 22.6%.  相似文献   

20.
M. Attalla 《实验传热》2015,28(2):139-155
The heat transfer characteristics in a stagnation region were investigated experimentally for five circular free jets impinging into a heated flat plate. The local temperature distributions are estimated from the thermal images obtained from an infrared camera. To get a precise heat transfer data over the plate, fully developed straight pipe jets were used in this study. Mean jet Reynolds number varied from 1,000 to 45,000, jet-to-plate vertical non-dimensional distance H/D varied from 2 to 6, and the spacing distance jet-to-jet S/D varied from 2 to 8. A geometrical arrangement of one jet surrounded by four jets an in-line array was tested. The results show that the stagnation point Nusselt number is correlated to a jet Reynolds number as Nust∝Re0.61. The average Nusselt number is higher at a separation distance of 2D for three cases of spacing distances, S/D = 2, 4, and 6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号