首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X. Hu  G. Lin  X. Bu  Y. Cai  D. Wen 《实验传热》2013,26(1):85-113
A closed-loop two-phase mini-channel-based heat sink driven by a micro-gear pump was developed in this work. Using water as an example, experiments were performed in two micro-channel heat sinks under the conditions of initial pressure of Pin = 34–113 kPa, mass velocity of G = 19–468 kg/m2s, outlet quality of xe,out = ?14–66%, and heat flux of q″ = 0–230 W/cm2, which covered single-phase flow, subcooled flow boiling, and saturated flow boiling regions. The results showed distinctive differences between the subcooled and saturated boiling regime and revealed that the influence of the system pressure. The experimental data were also compared to a boiling mechanism demarcation map and assessed against some empirical correlations, which suggests some uniqueness of the current heat sink associated with flow boiling at the mesoscale.  相似文献   

2.
对乙烷、丙烷纯质及三种不同浓度比例的乙烷/丙烷二元混合物在内径为8mm的水平管内进行了饱和流动沸腾传热特性的实验研究,重点分析了热流密度、质量流量的变化对二元混合工质传热系数的影响。选用了4种专用于计算混合物流动换热的关联式,并与实验数据进行了比较,其中Gungor—Winterton and Thome关联式和Zou...  相似文献   

3.
L. X. Yang  A. Guo  D. Liu 《实验传热》2013,26(2):221-243
Accurate models for the onset of nucleate boiling, density of active nucleation sites (Na), bubble departure size (Dd), and departure frequency (fd) are essential to the success of computational fluid dynamics analysis of two-phase thermal-hydraulics involving subcooled flow boiling in nuclear reactor systems. This work presents an experimental study of subcooled flow boiling in a vertical upward narrow rectangular channel that mimics the flow passage in the plate fuel assembly of boiling water reactors. The experiments are conducted over a range of mass flux (G = 122–657 kg/m2s), inlet subcooling (ΔTsub = 4.7–33.3?C), and heat flux (q″ = 1.7–28.9 W/cm2). Based on the experimental data, empirical correlations are developed for the prediction of onset of nucleate boiling, Na, Dd, and fd for given flow conditions. These correlations are valid in the nucleate boiling regime when the wall superheat is less than 12°C and can be incorporated in the computational fluid dynamics codes to enable more precise simulation of subcooled flow boiling heat transfer and two-phase flow in nuclear energy applications.  相似文献   

4.
对不同质量分数下非共沸混合工质(R134a/R32)在微尺度管道内的流动沸腾换热特性进行了比较和分析,阐述了热流密度、质量流量和质量干度对换热的影响。结果表明:热流密度对换热的影响随着质量流量的增加而愈加明显;在质量分数为75%/25%和65%/35%时,换热系数随着质量流量的增大而增大;而质量分数为85%/15%时,换热系数随质量流量的变化先增加后减小;随着质量干度的增加,换热系数在各质量分数下基本上都呈上升趋势。  相似文献   

5.
Heat transfer in two-phase flow boiling of a dilute mixture of TiO2 nanoparticles in R141b base fluid in a smooth tube is investigated experimentally. Examining the obtained results reveals that enhancement of the convective heat transfer coefficient for the particle volume fractions of 0.01% and 0.03% in comparison with pure R141b is more pronounced for a higher volume fraction. The measured data also show that at higher vapor qualities, the improvement in heat transfer coefficient is greater. Moreover, the heat transfer coefficient decreases substantially with mass flux while an increase in saturation temperature leads to an improvement in this coefficient.  相似文献   

6.
In this article, an experimental investigation is performed to measure the boiling heat transfer coefficient of water flow in a microchannel with a hydraulic diameter of 500 μm. Experimental tests are conducted with heat fluxes ranging from 100 to 400 kW/m2, vapor quality from 0 to 0.2, and mass fluxes of 200, 400, and 600 kg/m2s. Also, this study has modified the liquid Froude number to present a flow pattern transition toward an annular flow. Experimental results show that the flow boiling heat transfer coefficient is not dependent on mass flux and vapor quality but on heat flux to a certain degree. The measured heat transfer coefficient is compared with a few available correlations proposed for macroscales, and it is found that previous correlations have overestimated the flow boiling heat transfer coefficient for the test conditions considered in this work. This article proposes a new correlation model regarding the boiling heat transfer coefficient in mini- and microchannels using boiling number, Reynolds number, and modified Froude number.  相似文献   

7.
In this study, the effects of surface roughness, fluid velocity, and surface inclination on hot spot subcooled flow boiling are investigated experimentally. The experimental set-up consists of a circular heater that is placed on the lower wall of a channel. Based on the experimental data, two new independent empirical correlations are presented. The experimental results show that by increasing the surface roughness and fluid velocity, the surface heat fluxes increase. Inclination of the surface in either direction yields a higher heat transfer coefficient in comparison to its horizontal position when the surface is smooth and lower for the rough surface.  相似文献   

8.
水是微通道流动沸腾常用的换热工质,由于其饱和温度较大,目前的沸腾实验大多采用制冷剂替代.然而,水和制冷剂在物性参数上依然具有较大差异,应用于制冷剂的换热公式并不一定能有效应用于水.因此,本文收集1084个工质为水和1002个工质为制冷剂的实验数据,比较两者在无量纲数上的差异,并选取6个常用换热公式,比较其应用于两者的预...  相似文献   

9.
实验研究了制冷剂-润滑油混合流体在内嵌泡沫金属圆管内流动沸腾的换热特性。泡沫金属为10ppi、90%孔隙率;制冷剂为R410A,润滑油为VG68,油浓度为0~5%。实验结果表明:纯制冷剂工况下,泡沫金属强化流动沸腾换热系数,换热系数提高30%~120%;含油工况下,泡沫金属只强化流动沸腾换热系数20%以下,在低质流密度或者高质流密度的高干度情况下出现恶化换热的情况。润滑油总是恶化制冷剂在内嵌泡沫金属圆管内流动沸腾的换热系数,换热系数最多恶化71%,且在低质流密度下对换热的恶化比在高质流密度工况下严重。  相似文献   

10.
Subcooled flow boiling heat transfer experiments were performed with a 50/50 ethylene glycol/water mixture in a finned aluminum channel. The channel represented a hybrid electric vehicle power electronic cold plate receiving a 50/50 mixture from the radiator at 105°C and 2 atmospheres. Experiments used a range of mixture flow rates and both top- and bottom-heating situations. Boiling curves were generated, and subcooled flow boiling heat transfer coefficients were determined including the test channel fin effects. Subcooled flow boiling heat transfer coefficients showed a 25–30% increase compared to single-phase convection.  相似文献   

11.
A vertical cylinder was applied as a heat source into a water pool; the vibrations were imposed into the heater with different heat fluxes, and the frequencies were adjusted at 10, 15, 20, and 25 Hz. An imaging system was employed to observe the produced bubbles around the cylindrical heat source. The results showed that the boiling heat transfer was enhanced under the vibrations with a shorter transient process, and the wall temperature also decreased. The best enhancement ratio was achieved at the frequency of 25 Hz and a heat flux value of 30 kW/m2 as a consequence of imposed vibrations.  相似文献   

12.
An experimental investigation of heat transfer and fluid flow in a rectangular duct roughened by broken V-shaped ribs pointing upstream was carried out. The rectangular duct had an aspect ratio of 1/8, and the Reynolds number range was from 1000 to 6000. Liquid Crystal Thermography (LCT) was used to obtain the detailed heat transfer distributions on the ribbed wall. The main observed characteristics include spanwise variation, local maxima, and saw-tooth fashion along the streamwise direction. These features were correlated and explained by the detailed velocity structures, observed by Particle Image Velocimetry (PIV). The flow characteristics introduced by ribs include altered spanwise profile of the mean flow velocity, a complicated secondary flow over the cross section, and flow separation and reattachment along the streamwise direction. In addition, a comparison of overall thermal and hydraulic performance with previously tested continuous ribs was conducted. It was found that the broken ribs had better overall performance in the high Reynolds number range.  相似文献   

13.
窄通道过冷沸腾汽化核心密度及汽泡脱离频率的影响因素   总被引:1,自引:0,他引:1  
本文以水为工质,研究了工况参数对竖直矩形窄缝流道内上升过冷流动沸腾的汽化核心密度和汽泡脱离频率的影响。研究发现,流道间隙越小则汽化核心密度越大,汽化核心密度和最小成核半径存在定量关系;热流密度增大、过冷度降低或压力升高都使汽泡脱离频率增大,热流密度增大时,压力对汽泡脱离频率的影响增大。  相似文献   

14.
列车牵引变流器功率模块IGBT的散热问题近年来备受关注.本文以微通道内流动沸腾换热的"M"型曲线峰值点传热强化理论为依据,通过实验研究微通道长度和结构对冷板表面温度的影响,发现短通道能够有效控制通道内蒸汽干度水平,使得微通道冷板内以弹状流或薄膜环状流为主流流型,从而获得较高传热系数.在一定面积的冷板内设置短通道组合的分...  相似文献   

15.

The results of an experimental investigation of staggered tube bundle heat transfer to upward and downward moving vertical foam flow are presented in this article. It was determined that a dependency exists between tube bundle heat transfer intensity on foam volumetric void fraction, foam flow velocity and direction, and liquid drainage from foam. In addition to this, the influence of tube position of the bundle on heat transfer was investigated. Experimental results were summarized by criterion equations, which can be applied in the design of foam type heat exchangers.  相似文献   

16.
An experimental investigation has been carried out for turbulent flow through a tube with perforated strip inserts. Strips were of mild steels with circular holes of different diameters. Flow varies, with ranging Reynolds numbers from 15,000 to 47,000. Air velocity, tube wall temperatures, and pressure drops were measured for a plain and strip-inserted tube. The heat transfer coefficient and friction factor were found to be 2.80 times and 1.8 times, respectively, that of the plain tube. The heat transfer performance was evaluated and found to be 2.3 times that of the plain tube based on constant blower power.  相似文献   

17.
本文实验对比研究了0.3 mm、0.5mm、0.7 mm三种粒径的铜颗粒烧结与堆积床多孔介质中的流动沸腾换热,主要研究了入口流速、热流密度、加热方位及粒径对流动沸腾换热的影响,以及多孔介质中的沸腾滞后。实验结果表明:大入口流速、低热流密度、下方加热以及小粒径时加热壁面的过热度较低,即有利于沸腾换热;本实验所用烧结多孔介质壁面过热度高于堆积床多孔介质,其原因是内部含有闭孔。  相似文献   

18.
Abstract

Fluids in which nanometer-sized solid particles are suspended are called nanofluids. These fluids can be employed to increase the heat transfer rate in various applications. In this study, the convective heat transfer for Cu/water nanofluid through a circular tube was experimentally investigated. The flow was laminar, and constant wall temperature was used as thermal boundary condition. The Nusselt number of nanofluids for different nanoparticle concentrations, as well as various Peclet numbers, was obtained. Also, the rheological properties of the nanofluid for different volume fractions of nanoparticles were measured and compared with theoretical models. The results show that the heat transfer coefficient is enhanced by increasing the nanoparticle concentrations as well as the Peclet number.  相似文献   

19.
以水为工质,在热管工况(真空减压条件)下对具有不同颗粒种类(电解粉和水雾粉)、颗粒直径和多孔芯厚度的铜粉颗粒烧结多孔芯进行了蒸发/沸腾换热实验研究。结果表明:随着热流密度的上升,换热系数先上升后下降;在孔隙率一定的情况下,存在最优多孔芯厚度使得蒸发/沸腾换热性能最佳;当多孔芯厚度一定时,在热流密度不是很大时存在着最优孔...  相似文献   

20.
A tailor-made convective heat transfer test facility is constructed to study the single-phase convective heat transfer of deionized water and 30 vol% and 60 vol% aqua–ethylene glycol in a stainless steel tube of 4 mm in inner diameter and 1 m in length. The heat flux is varied between 1 and 4 kW·m?2 and for mass flux ranging from 160 to 475 kg·m?2 s?1. The experiments were predominantly conducted only for laminar flow regime. Finally, the heat transfer coefficient is recorded and compared with the conventional theories. It is observed that the presence of ethylene glycol in water decreases the heat transfer coefficient by more than 50%, due to the decreased Reynolds number and thermal conductivity of the mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号