首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Huaqing Xie  Yang Li  Wei Yu 《Physics letters. A》2010,374(25):2566-2568
We reported on investigation of the convective heat transfer enhancement of nanofluids as coolants in laminar flows inside a circular copper tube with constant wall temperature. Nanofluids containing Al2O3, ZnO, TiO2, and MgO nanoparticles were prepared with a mixture of 55 vol.% distilled water and 45 vol.% ethylene glycol as base fluid. It was found that the heat transfer behaviors of the nanofluids were highly depended on the volume fraction, average size, species of the suspended nanoparticles and the flow conditions. MgO, Al2O3, and ZnO nanofluids exhibited superior enhancements of heat transfer coefficient, with the highest enhancement up to 252% at a Reynolds number of 1000 for MgO nanofluid. Our results demonstrated that these oxide nanofluids might be promising alternatives for conventional coolants.  相似文献   

2.
The Prandtl number, Reynolds number and Nusselt number are functions of thermophysical properties of nanofluids, and these numbers strongly influence the convective heat transfer coefficient. The thermophysical properties vary with volumetric concentration of nanofluids. Therefore, a comprehensive analysis was performed to evaluate the effects on the performance of nanofluids due to variations of density, specific heat, thermal conductivity and viscosity, which are functions of nanoparticle volume concentration. Three metallic oxides, aluminum oxide (Al2O3), copper oxide (CuO), and titanium dioxide (TiO2), dispersed in water as the base fluid were studied. A convenient figure of merit, known as the Mouromtseff number, is used as a base of comparisonfor laminar and turbulent flows. The results indicated that the considered nanofluids can successfully replace water in specific applications for a single-phase forced convection flow in a tube.  相似文献   

3.
Heat transfer behaviours of nanofluids in a uniformly heated tube   总被引:2,自引:0,他引:2  
In the present work, we consider the problem of the forced convection flow of water– γAl2O3 and ethylene glycol– γAl2O3 nanofluids inside a uniformly heated tube that is submitted to a constant and uniform heat flux at the wall. In general, it is observed that the inclusion of nanoparticles has increased considerably the heat transfer at the tube wall for both the laminar and turbulent regimes. Such improvement of heat transfer becomes more pronounced with the increase of the particle concentration. On the other hand, the presence of particles has produced adverse effects on the wall friction that also increases with the particle volume concentration. Results have also shown that the ethylene glycol– γAl2O3 mixture gives a far better heat transfer enhancement than the water– γAl2O3 mixture.  相似文献   

4.
This paper presents a comparison of thermal performance of helical screw tape inserts in laminar flow of Al2O3/water and CuO/water nanofluids through a straight circular duct with constant heat flux boundary condition. The helical screw tape inserts with twist ratios Y = 1.78, 2.44 and 3 were used in the experimental study using 0.1% volume concentration Al2O3/water and CuO/water nanofluids. Nanofluids with required volume concentration of 0.1% were prepared by dispersing specified amounts of Al2O3 and CuO nanoparticles in deionised water. The performance analysis of helical screw tape inserts in laminar flow of Al2O3/water and CuO/water nanofluids is done by evaluating thermal performance factor for constant pumping power condition. Thermal performance factor of helical screw tape inserts using CuO/water nanofluid is found to be higher when compared with the corresponding value using Al2O3/water. Therefore, the helical screw tape inserts show better thermal performance when used with CuO/water nanofluid than with Al2O3/water nanofluid.  相似文献   

5.
This paper reports a numerical analysis of the performance of a counter-flow rectangular shaped microchannel heat exchanger (MCHE) using nanofluids as the working fluids. Finite volume method was used to solve the three-dimensional steady, laminar developing flow and conjugate heat transfer in aluminum MCHE. The nanofluids used were Ag, Al2O3, CuO, SiO2, and TiO2 and the performance was compared with water. The thermal, flow fields and performance of the MCHE were analyzed using different nanofluids, different Reynolds numbers and different nanoparticle concentrations. Temperature profile, heat transfer coefficient, pressure profile, and wall shear stress were obtained from the simulations and the performance was discussed in terms of heat transfer rate, pumping power, effectiveness, and performance index. Results indicated enhanced performance with the usage of nanofluids, and slight penalty in pressure drop. The increase in Reynolds number caused an increase in the heat transfer rate and a decrease in the overall bulk temperature of the cold fluid. The increase in nanoparticle concentration also yielded better performance at the expense of increased pressure drop.  相似文献   

6.
In this investigation, laminar flow heat transfer enhancement in circular tube utilizing different nanofluids including Al2O3 (20 nm), CuO (50 nm), and Cu (25 nm) nanoparticles in water was studied. Constant wall temperature was used as thermal boundary condition. The results indicate enhancement of heat transfer with increasing nanoparticle concentrations, but an optimum concentration for each nanofluid suspension can be found. Based on the experimental results, metallic nanoparticles show better enhancement of heat transfer coefficient in comparison with oxide particles. The promotions of heat transfer due to utilizing nanoparticles are higher than the theoretical correlation prediction.  相似文献   

7.
Numerical and experimental investigation is carried out to study the effect of combined vortex generator and nanofluids on turbulent heat transfer and fluid flow characteristics in an equilateral triangular duct. A triangular duct provides a lower heat transfer rate and lower pressure drop compared to other duct configurations. The improvement of heat transfer of these ducts increases their importance for providing higher heat transfer and lower pressure drop. Two different types of nanoparticles, namely Al2O3 and SiO2, suspended in distilled water with two particle concentrations are successfully prepared and experimentally tested. The numerical and experimental results show dramatic heat transfer enhancement by using a vortex generator and nanofluids, simultaneously accomplished with a moderate increase in the friction factor. A low deviation has been seen between the present numerical and experimental results.  相似文献   

8.
The CFD simulation of heat transfer characteristics of a nanofluid in a circular tube fitted with helical twist inserts under constant heat flux has been explained using Fluent version 6.3.26 in laminar flow. Al2O3 nanoparticles in water of 0.5%, 1.0% and 1.5% concentrations and helical twist inserts of twist ratios 2.93, 3.91 and 4.89 has been used for the simulation. All thermophysical properties of nanofluids are temperature dependent. The heat transfer enhancement increases with Reynolds number and decreases with twist ratio with maximum for the twist ratio 2.93. By comparing the heat transfer rates of water and nanofluids, the increase in Nusselt number is 5%–31% for different helical inserts and different volume concentrations. The maximum heat transfer enhancement is 31.29% for helical insert of twist ratio 2.93 and for the volume concentration of 1.5% corresponding to the Reynolds number of 2039. The data obtained by simulation match with the literature value of water with the discrepancy of less than ±10% for plain tube and tube fitted with helical tape inserts for Nusselt number.  相似文献   

9.
In this work, two dimensional laminar flow of different nanofluids flow inside a triangular duct with the existence of vortex generator is numerically investigated. The governing equations of mass, momentum and energy were solved using the finite volume method (FVM). The effects of type of the nanoparticles, particle concentrations, and Reynolds number on the heat transfer coefficient and pressure drop of nanofluids are examined. Reynolds number is ranged from 100 to 800. A constant surface temperature is assumed to be the thermal condition for the upper and lower heated walls. In the present work, three nanofluids are examined which are Al2O3, CuO and SiO2 suspended in the base fluid of ethylene glycol with nanoparticles concentrations ranged from 1 to 6%. The results show that for the case of SiO2–EG, at ? = 6% and Re = 800, it is found that the average Nusselt number is about 50.0% higher than the case of Re = 100.  相似文献   

10.
In this work, the flow boiling of TiO2/water and Al2O3/water nanofluids was investigated experimentally and simulated with two phases. Experimental results were obtained in two directions and compared together. The volume fraction and heat transfer coefficient obtained from the vertical tube were compared with those obtained from the horizontal tube. The results showed that the contours of vapor volume fraction in horizontal tube are completely different from the vertical tube, which is due to the buoyancy effect. Moreover, the effect of nanoparticles on both flow directions was almost the same, while heat transfer coefficient was not the same in these flow directions. Based on the experimental result, presence of nanoparticles in the base fluid cannot increase the heat transfer coefficient.  相似文献   

11.
In this article, thermal and hydrodynamic performances of a miniature tangential heat sink are investigated experimentally by using Al2O3–H2O and TiO2–H2O nanofluids. The effects of flow rate and volume concentration on the thermal performance have been investigated for the Reynolds number range of 210 to 1,100. Experimental results show that the average convective heat transfer coefficient increases 14 and 11% and the bottom temperature of the heat sink decreases 2.2°C and 1.6°C by using Al2O3–H2O and TiO2–H2O nanofluid instead of pure distilled water, respectively.  相似文献   

12.
A mathematical model to predict large enhancement of thermal conductivity of nanofluids by considering the Brownian motion is proposed. The effect of the Brownian motion on the flow and heat transfer characteristics is examined. The computations were done for various types of nanoparticles such as CuO, Al2O3, and ZnO dispersed in a base fluid (water), volume fraction of nanoparticles ? in the range of 1 % to 6 % at a fixed Reynolds number Re = 450 and nanoparticle diameter dnp = 30 nm. Our results demonstrate that Brownian motion could be an important factor that enhances the thermal conductivity of nanofluids. Nanofluid of Al2O3 is observed to have the highest Nusselt number Nu among other nanofluids types, while nanofluid of ZnO nanoparticles has the lowest Nu. Effects of the square cylinder on heat transfer characteristics are significant with considering Brownian motion. Enhancement in the maximum value of Nu of 29 % and 26 % are obtained at the lower and the upper walls of the channel, respectively, by considering the Brownian effects, with square cylinder, compared with that in the case without considering the Brownian motion. On the other hand, results show a marked improvement in heat transfer compared to the base fluid, this improvement is more pronounced on the upper wall for higher ?.  相似文献   

13.
Nanofluids are a new class of heat transfer fluids developed by suspending nanosized solid particles in liquids. Larger thermal conductivity of solid particles compared to the base fluid such as water, ethylene glycol, engine oil etc. significantly enhances their thermal properties. Several phenomenological models have been proposed to explain the anomalous heat transfer enhancement in nanofluids. This paper presents a systematic literature survey to exploit the characteristics of nanofluids, viz., thermal conductivity, specific heat and other thermal properties. An empirical correlation for the thermal conductivity of Al2O3 + water and Cu + water nanofluids, considering the effects of temperature, volume fraction and size of the nanoparticle is developed and presented. A correlation for the evaluation of Nusselt number is also developed and presented and compared in graphical form. This enhanced thermophysical and heat transfer characteristics make fluids embedded with nanomaterials as excellent candidates for future applications.   相似文献   

14.
A numerical study on natural convective heat transfer inside an enclosure with center heater using nanofluid has been carried out. The effect of different length of center heater on the flow and temperature fields is analysed for different Rayleigh numbers. Results are displayed in terms of streamlines, isotherms, mid height velocity profile and average Nusselt number. The numerical results reveal heat transfer increases with increasing heater length at both vertical and horizontal positions for increasing values of Rayleigh numbers. In particular, a higher increase in heat transfer is obtained with heater situated with vertical position of maximum length. Also it is obtained that enhancement of heat transfer is high for Ag - water nanofluid than CuO -water and Al2O3 -water nanofluids.  相似文献   

15.
Three kinds of nanofluids are prepared by dispersing Al2O3 and AlN nanoparticles-in-transformer oil. The thermal conductivity of the nanoparticle–oil mixtures increases with particle volume fraction and thermal conductivity of the solid particle itself. The AlN nanoparticles at a volume fraction of 0.5% can increase the thermal conductivity of the transformer oil by 8% and the overall heat transfer coefficient by 20%. From the natural convection test using a prototype transformer, the cooling effect of Al2O3/AlN-oil nanofluids on the heating element and oil itself is confirmed. However, the excess quantity of surfactant has a harmful effect on viscosity, thermal property, chemical stability, and thus it is strongly recommended to control the addition of the surfactant with great care.  相似文献   

16.
齐聪  何光艳  李意民  何玉荣 《物理学报》2015,64(2):24703-024703
纳米流体作为一种较高的导热介质, 广泛应用于各个传热领域. 鉴于纳米颗粒导热系数和成本之间的矛盾, 本文提出了一种混合纳米流体. 为了研究混合纳米流体颗粒间相互作用机理和自然对流换热特性, 在考虑颗粒间相互作用力的基础上, 利用多尺度技术推导了纳米流体流场和温度场的格子Boltzmann方程, 通过耦合流动和温度场的演化方程, 建立了Cu/Al2O3水混合纳米流体的格子Boltzmann模型, 研究了混合纳米流体颗粒间的相互作用机理和纳米颗粒在腔体内的分布. 发现在颗粒间相互作用力中, 布朗力远远大于其他作用力, 温差驱动力和布朗力对纳米颗粒的分布影响最大. 分析了纳米颗粒组分、瑞利数对自然对流换热的影响, 对比了混合纳米流体(Cu/Al2O3-水)与单一金属颗粒纳米流体(Al2O3-水)的自然对流换热特性, 发现混合纳米流体具有更强的换热特性.  相似文献   

17.
Al2O3 nanofluids flow has been studied in etched glass micromodel which is idealization of porous media by using a pseudo 2D Lattice Boltzmann Method (LBM). The predictions were compared with experimental results. Pressure drop / flow rate relations have been measured for pure water and Al2O3 nanofluids. Because the size of Al2O3 nanoparticles is tiny enough to permit through the pore throats of the micromodel, blockage does not occur and the permeability is independent of the nanofluid volume fraction. Therefore, the nanofluid behaves as a single phase fluid, and a single phase LBM is able to simulate the results of this experiment. Although the flow in micromodels is 3D, we showed that 2D LBM can be used provided an effective viscous drag force, representing the effect of the third dimension, is considered. Good qualitative and quantitative agreement is seen between the numerical and experimental results.  相似文献   

18.
This paper deals with the boundary layer flow and heat transfer of nanofluids over a stretching wedge with velocity-slip boundary conditions. In this analysis, Hall effect and Joule heating are taken into consideration. Four different types of water-base nanofluids containing copper (Cu), silver (Ag), alumina (Al2O3), and titania (TiO2) nanoparticles are analyzed. The partial differential equations governing the flow and temperature fields are converted into a system of nonlinear ordinary differential equations using a similarity transformation. The resulting similarity equations are then solved by using the shooting technique along with the fourth order Runge-Kutta method. The effects of types of nanoparticles, the volume fraction of nanoparticles, the magnetic parameter, the Hall parameter, the wedge angle parameter, and the velocityslip parameter on the velocity and temperature fields are discussed and presented graphically, respectively.  相似文献   

19.
Nanofluids, because of their enhanced heat transfer capability as compared to normal water/glycol/oil based fluids, offer the engineer opportunities for development in areas where high heat transfer, low temperature tolerance and small component size are required. In this present paper, the hydrodynamic and thermal fields of a water–γAl2O3 nanofluid in a radial laminar flow cooling system are considered. Results indicate that considerable heat transfer enhancement is possible, even achieving a twofold increase in the case of a 10% nanoparticle volume fraction nanofluid. On the other hand, an increase in wall shear stress is also noticed with an increase in particle volume concentration.  相似文献   

20.
Abstract

Fluids in which nanometer-sized solid particles are suspended are called nanofluids. These fluids can be employed to increase the heat transfer rate in various applications. In this study, the convective heat transfer for Cu/water nanofluid through a circular tube was experimentally investigated. The flow was laminar, and constant wall temperature was used as thermal boundary condition. The Nusselt number of nanofluids for different nanoparticle concentrations, as well as various Peclet numbers, was obtained. Also, the rheological properties of the nanofluid for different volume fractions of nanoparticles were measured and compared with theoretical models. The results show that the heat transfer coefficient is enhanced by increasing the nanoparticle concentrations as well as the Peclet number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号