首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Low-temperature experiments of Raman scattering and heat capacity have been performed in a B2O3 glass, pressure quenched from 1200 °C in order to obtain the density as largest as possible (ρ = 2373 kg/m3). When compared to those of compacted B2O3 glasses having smaller density, the Raman spectrum of this glass exhibits a strong decrease of the intensities of the Boson peak and the band at 808 cm?1, both the features being determined by the decrease of the boroxol ring population. Moreover, the Boson peak exhibits a large shift to 68 cm?1 (from 26 cm?1 observed in normal vitreous B2O3). The high atomic packing of the glassy network also leads to a marked decrease of the excess heat capacity over the Debye T3-behaviour characterizing the crystal. The density g(ν) of low-frequency vibrational states has been assessed by using the low-frequency Raman intensity to determine the temperature dependence of the low-temperature heat capacity. The observations performed over a wide range of glass densities are compared to the predictions of theoretical models and computer simulations explaining the nature of the Boson peak. Consistency with the results of a simulation study concerning the vibrations of jammed particles leads to evaluate a nanometre length scale which suggests the existence of poorly packed domains formed from several connected boroxols. These soft regions are believed to be the main source of low-frequency optic-like vibrations giving rise to the Boson peak.  相似文献   

2.
A. Trejo  C. Garcia 《实验传热》2013,26(1):97-112
Transient heat transfer of liquid methane under forced convection in a 1.8 mm × 1.8 mm asymmetrically heated square channel was investigated. This study is aimed at understanding the heat transfer behavior of cryogenic propellant in cooling channels of a regeneratively cooled rocket engine at the start-up condition. To simulate high heat load conditions representative of regeneratively cooled rocket engines, a high heat flux test facility with cryogenic liquid handing capabilities was developed at the Center for Space Exploration Technology Research. The time history of inlet and outlet fluid temperatures and test section channel wall temperatures were measured at high heat flux conditions (from 1.19 to 3.80 MW/m2) and a Reynolds number (Re) range of 1.88 × 105 to 3.45 × 105. The measured wall temperature data point toward possible film boiling within the test section during certain tests, particularly with higher heat fluxes and lower Reynolds number conditions that resulted in higher wall temperatures. The transient average Nusselt numbers (NuL) of the channel obtained from the experimental measurements are lower than those calculated from the Sieder–Tate correlation (NuO); however, the ratio (NuL/NuO) increases with the increase in Reynolds number. The ratio is around 0.25 at the lower end of Re and then increases to 0.7 at the maximum Re studied in the present investigation.  相似文献   

3.
G. Arslan  N. Eskin 《实验传热》2015,28(5):430-445
In this study, condensation of pure refrigerant R134a vapor inside a smooth vertical tube was experimentally investigated. The test section was made of a copper tube with inside diameter of 7.52 mm and length of 1 m. Experimental tests were conducted for mass fluxes in the range of 20–175 kg/m2s with saturation pressure ranging between 5.8 and 7 bar. The effects of mass flux, saturation pressure, and temperature difference between the refrigerant and tube inner wall (ΔT) on the heat transfer performance were analyzed through experimental data. Obtained results showed that average condensation heat transfer coefficient decreases with increasing saturation pressure or temperature difference (ΔT). In addition, for the same temperature difference (ΔT), heat can be removed from the refrigerant at a higher rate at relatively low pressure values. Under the same operating conditions, it was shown that average condensation heat transfer coefficient increases as mass flux increases. Finally, the most widely used heat transfer coefficient correlations for condensation inside smooth tubes were analyzed through the experimental data. The best fit was obtained with Akers et al.'s (1959) correlation with an absolute mean deviation of 22.6%.  相似文献   

4.
This article experimentally and numerically analyzes the effect of turbulators with different geometries (Type I, Type II, Type III, and Type IV) located at the inlet of the inner pipe in a concentric-type heat exchanger. Experiments were performed at parallel-flow conditions in the same and opposite directions to investigate the impact of manufactured turbulators on heat transfer and pressure drop. In the numerical study, ANSYS 12.0 Fluent code program was used, and basic protection equations were solved in the steady-state, three-dimensional, and turbulence-flow conditions. Results were obtained from numerical analysis conducted at different flow values of air (7, 8, 9, 10, 11, and 12 m3/h). The distribution of temperature, velocity, and pressure was demonstrated as a result of numerical analyses. Experimental and numerical results were compared, and it was observed that they were in conformity with each other. When the data obtained from the analyses were examined, the highest heat transfer, pressure drop, and friction factor increase were detected to be in the Type IV turbulator.  相似文献   

5.
6.
In this study, Marangoni flow and heat transfer enhancement in a heat pipe have been investigated. The experiments were carried out at different heat inputs. A constant temperature water bath was used at the condenser section at three temperature levels. Heat transfer coefficients and thermal resistances of the heat pipe were measured for pure water and water/butanol solutions. The experimental results confirmed that the heat pipe filled with butanol solutions showed better thermal performance than the water-filled heat pipe. At maximum heat flux, 25% heat transfer improvement was obtained when 7 wt% butanol solution was used instead of pure water.  相似文献   

7.
An experimental investigation has been carried out to study the enhancement in heat transfer coefficient by inserting coiled wire around the outer surface of the inner tube of the double-pipe heat exchanger. Insulated wires, with a circular cross-section of 2 mm diameter, forming a coil of different pitches (p = 6, 12, and 20 mm), were used as turbulators. The investigation is performed for turbulent water flow in a double-pipe heat exchanger with cold water in the annulus space for both parallel and counter flows. The experiments were performed for Reynolds numbers ranging from 4,000 to 14,000. The experimental results reveal that the use of coiled circular wires leads to a considerable increase in heat transfer coefficients compared with a smooth wall tube for both parallel and counter water flows. The mean Nusselt number increases with Reynolds number and pitch. The convective heat transfer coefficient for a turbulent water flow increases for all coiled wire pitches, with the highest enhancement of about 450% for counter flow and 400% for the parallel flow. New correlations for mean relative Nusselt numbers at different coiled wire pitches are provided.  相似文献   

8.
M. Attalla 《实验传热》2015,28(2):139-155
The heat transfer characteristics in a stagnation region were investigated experimentally for five circular free jets impinging into a heated flat plate. The local temperature distributions are estimated from the thermal images obtained from an infrared camera. To get a precise heat transfer data over the plate, fully developed straight pipe jets were used in this study. Mean jet Reynolds number varied from 1,000 to 45,000, jet-to-plate vertical non-dimensional distance H/D varied from 2 to 6, and the spacing distance jet-to-jet S/D varied from 2 to 8. A geometrical arrangement of one jet surrounded by four jets an in-line array was tested. The results show that the stagnation point Nusselt number is correlated to a jet Reynolds number as Nust∝Re0.61. The average Nusselt number is higher at a separation distance of 2D for three cases of spacing distances, S/D = 2, 4, and 6.  相似文献   

9.
This article presents the nucleate boiling heat transfer characteristics of acetone at one bar on smooth and enhanced circular stainless steel surfaces (SS 316) of 20 mm diameter for heat flux between 1 and 4 W cm? 2, which mimic the operating condition of a typical immersion electronic cooling system. The experimental heat transfer coefficient from the smooth surface is validated against Borishanski correlation [1] within acceptable limits of ± 5%. The steel smooth surface is enhanced by providing 100 equally spaced indents of 0.5 mm diameter and 0.05 mm depth. The experimental results indicate that the enhanced surface shows a good shift in the boiling curve and thus, enhancing the nucleate boiling heat transfer at a lesser wall super heat when compared to the smooth surface by around 35% for tested condition. The effect of subcooling on nucleate boiling in enhanced surface reveal that the heat transfer coefficient degrade by 40 to 55% for a sub cooling of 5 to 10 K. The influence of material is studied by a similar enhanced surface made of brass and compared for the same working condition. The brass enhanced surface showed an improved of around 50% against the steel-enhanced surface. Also, the influence of fluid is studied by comparing acetone and n-pentane, which showed that the latter an enhancement in heat transfer coefficient of 50% over the former.  相似文献   

10.
In this article, an experimental investigation is performed to measure the boiling heat transfer coefficient of water flow in a microchannel with a hydraulic diameter of 500 μm. Experimental tests are conducted with heat fluxes ranging from 100 to 400 kW/m2, vapor quality from 0 to 0.2, and mass fluxes of 200, 400, and 600 kg/m2s. Also, this study has modified the liquid Froude number to present a flow pattern transition toward an annular flow. Experimental results show that the flow boiling heat transfer coefficient is not dependent on mass flux and vapor quality but on heat flux to a certain degree. The measured heat transfer coefficient is compared with a few available correlations proposed for macroscales, and it is found that previous correlations have overestimated the flow boiling heat transfer coefficient for the test conditions considered in this work. This article proposes a new correlation model regarding the boiling heat transfer coefficient in mini- and microchannels using boiling number, Reynolds number, and modified Froude number.  相似文献   

11.
In this work, a double-layered microchannel heat exchanger is designed for investigation on gas-to-gas heat transfer. The micro-device contains 133 parallel microchannels machined into a polished polyether ether ketone plate for both the hot side and cold side. The microchannels are 200 μm high, 200 μm wide, and 39.8 mm long. The design of the micro-device allows tests with partition foils in different materials and of flexible thickness. A test rig is developed with the integration of customized pressure and temperature sensors for in situ measurements. Experimental tests on the counter-flow micro heat exchanger have been carried out for five different partition foils and various mass flow rates. The experimental results, in terms of pressure drop, heat transfer coefficients, and heat exchanger effectiveness are discussed and compared with the predictions of the classic theory for conventionally sized heat exchangers.  相似文献   

12.
G. Li  Y. Zheng  G. Hu  Z. Zhang 《实验传热》2013,26(2):198-211
Experiments have been carried out to study heat transfer enhancement from a heated rectangular flat plate in pulsating flows. A heat transfer empirical formula of the heated rectangular flat plate in pulsating flows was developed that correlates the heat transfer enhancement factor to the Womersley number (α = 3.3–23.8), the Reynolds number (Re = 527–4,217), and the pressure coefficient (C p  = 41.3–31,644.6). The results demonstrate that heat transfer from the rectangular flat plate was enhanced significantly under proper conditions. In addition, the influence of the Reynolds number on the heat transfer enhancement factor increases as the pressure amplitude increases.  相似文献   

13.
Heat transfer and pressure drop measurements were conducted to study the thermal-hydraulics in a square, round-edged channel roughened by ribs (e/Dh = 0.0638, p/e = 10) on one wall at Reynolds numbers ranging from 5.0 × 104 to 2.5 × 105. Three variously shaped ribs were investigated: Transverse ribs with square cross sections, transverse ribs, and upstream directed 60° V-shaped ribs with round-edged rib front and rear surfaces. Friction factors, Nusselt number ratios, roughness functions, and the thermal performance were presented. The highest heat transfer and best thermal performance is reached by the upstream directed V-shaped ribs.  相似文献   

14.
ABSTRACT

The present paper reports the experimental investigation of pool boiling heat transfer on multiscale functionalized copper surfaces. Multiscale functionalized surfaces are fabricated by employing the nano-second laser surface process (NLSP) technique. The heat transfer coefficients (HTCs) of functionalized surfaces are estimated experimentally by using water and acetone as pool liquid. Tests are performed at atmospheric pressure, and saturated pool boiling condition with heat flux varyies between 0 and 330 kW/m2. The maximum HTCs for functionalized surface and reference polished surface were found to be 41,500 W/m2K and 23,000 W/m2K, respectively, with water and 22,000 W/m2K and 14,000 W/m2K, respectively, with acetone.  相似文献   

15.

The performance of a domestic heat pump that uses a low quantity of propane as refrigerant has been experimentally investigated. The heat pump consists of two minichannel aluminium heat exchangers, a scroll compressor, and an electronic expansion valve. It was charged with the minimum amount of refrigerant propane required for the stable operation of the heat pump without permitting refrigerant vapor into the expansion valve at incoming heat source fluid temperature to the evaporator of +10°C. The inlet temperature of the heat source fluid passing through the evaporator was varied from +10°C to ?10°C while holding the condensing temperature constant at 35°C, 40°C, 50°C, and 60°C, respectively. The minimum refrigerant charges required at above-tested condensing temperatures were found to decrease when the condensing temperature increased and were recorded as 230 g, 224 g, 215 g, and 205 g, respectively. The results confirm that a heat pump with 5 kW capacity can be designed with less than 200 g charge of refrigerant propane in the system. Due to the high solubility of propane in compressor lubrication oil, the amount of refrigerant which may escape rapidly in case of accident or leakage is less than 150 g.  相似文献   

16.
Thermal performance of a latent heat storage unit is evaluated experimentally. The latent heat thermal energy storage system analyzed in this work is a shell-and-tube type of heat exchanger using paraffin wax (melting point between 58°C and 60°C) as the phase change material. The temperature distribution in the phase change material is measured with time. The influence of mass flow rate and inlet temperature of the heat transfer fluid on heat fraction is examined for both the melting and solidification processes. The mass flow rate of heat transfer fluid (water) is varied in the range of 0.0167 kg/s to 0.0833 kg/s (1 kg/min to 5 kg/min), and the fluid inlet temperature is varied between 75°C and 85°C. The experimental results indicate that the total melting time of the phase change material increases as the mass flow rate and inlet temperature of heat transfer fluid decrease. The fluid inlet temperature influences the heat fraction considerably as compared to the mass flow rate of heat transfer fluid during the melting process of the phase change material.  相似文献   

17.
Z. Ismail  R. Karim 《实验传热》2013,26(2):180-197
Heat transfer studies of dilute viscoelastic liquids in four flattened tubes with 0.635 cm original diameter, about 173 cm long, and with aspect ratios ranging from 1.4 to 5.7 were conducted. Hot water was used as the heating medium, and dilute solutions of polyacrylamide in water and in water mixtures were used as the viscoelastic solutions. Flattening the tubes could increase heat transfer by 101%, while secondary flow could further increase heat transfer coefficient by 75% at an aspect ratio of 1.6. Greater polyacrylamide concentrations increased heat transfer performance marginally. Viscosity does not influence the formation of secondary flow.  相似文献   

18.
This article presents an approach to the modeling of CaCO3 fouling and cleaning in a microscale cross-flow heat exchanger. The fouling progress was detected by thermal, fluid dynamical, and optical measures. In general, the observed fouling phenomena at microscale were comparable to those at macroscale. The detected thermal fouling resistance was between 10? 6 and 10? 3 m? 2 K? 1. As expected, crystallization fouling strongly depends on the surface temperature. In addition, the surface coverage can be a useful measure for both processes—fouling and cleaning. An extended approach to derive a reasonable fouling allowance was formulated through a fractional fouling resistance.  相似文献   

19.
分离式热管换热器传热特性的实验研究   总被引:1,自引:0,他引:1  
本文在自行设计分离式热管实验装置的基础上,对其传热特性进行了实验研究。其工作温度为170~250℃,热流密度为25~50 kW/m~2。蒸发段和冷凝段构成相同,均是由7根直径30 mm的无缝钢管短管束组成,管长为160 mm,带有紧套的钢帛环形肋片结构尺寸为:外径45 mm、厚1 mm、片间距4 mm。实验结果表明,在本实验条件下,分离式热管的最佳充液率按管束总容量计为18%~38%。根据实验结果拟合了最佳充液率(24%)下蒸发段内部平均沸腾换热系数和冷凝段内部凝结换热努塞尔数综合关系式。  相似文献   

20.
Two effects that have been observed when metals and metal alloys are vibrated during solidification are a decrease in dendritic spacing, which directly affects density, and faster cooling rates and associated solidification times. Because these two effects happen simultaneously during solidification, it is challenging to determine the one effect independently from the other. Most previous studies were on metals and metal alloys. In these studies, the one effect, i.e., the decrease in dendritic spacing, might influence the other, i.e., the faster cooling rates, and vice versa. The direct link between vibration and heat transfer has not yet been studied independently. The purpose of this study was to experimentally investigate the effect of vibration only on heat transfer and thus solidification rate. Experiments were conducted on paraffin wax, because it had a clearly defined macroscopic crystal structure consisting of mostly large straight-chain hydrocarbons. The advantage of the large straight-chain hydrocarbons was that the dendritic spacing was not affected by the cooling rate. Experiments were done with paraffin wax inside hollow plastic spheres of 40 mm diameter with 1 mm wall thickness. The paraffin wax was initially in a liquid state at a uniform temperature of 60°C and then submerged into a thermal bath at a uniform constant temperature of 15°C, which was approximately 20°C below the mean solidification temperature of the wax. Experiments were conducted in approximately 300 samples, with and without vibration at frequencies varying from 10–300 Hz. The first set of experiments was conducted to determine the solidification times. In the second set of experiments, the mass of wax solidified was determined at discrete time steps, with and without vibration. The results showed that paraffin wax had vibration independent of solid density contrary to other materials, e.g., metals and metal alloys. Enhancement of heat transfer resulted in quicker solidification times and possible control over the heat transfer rate. The increase in heat transfer leading to faster solidifcation times was observed to first occur as frequency increased and then to decrease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号