首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
管内插入物是强化管内换热的有效方法,内插可旋转结构在强化换热的同时还具有良好的除垢抑垢效果。实验研究了内插螺旋弹簧转子的管内换热以及转子的转动特性。结果表明,与光管相比,换热增强30%,但流动阻力增加5倍左右,转子的参数需要进一步优化以减小阻力。转子的转速与来流速度呈线性递增关系,与入口处转子相比,下游转子的转速逐渐降低,单螺旋转子转速降低的幅度大于双螺旋转子。双螺旋结构连续稳定运行半年以上,该转子强化换热及除垢抑垢性能稳定。  相似文献   

2.
Experimental studies on friction factor and heat transfer characteristics for the laminar flow of ethylene glycol in a square duct fitted with twisted tapes of different twist ratios under nearly uniform wall temperature conditions are reported in this article. The Nusselt numbers were found to be 5.44–7.49 and 2.46–4.87 times that of plain square duct forced convection values based on constant flow rate and constant pumping power criteria, respectively, for y = 2.66. The augmented friction factor and Nusselt number for a square duct is about 1.9 and 2.10 times higher than that for an augmented circular tube.  相似文献   

3.
Accurate, repeatable heat transfer and pressure-drop measurements have been made for condensation of CFC-113 with downflow inside enhanced microfin tubes and tubes containing twisted-wire inserts. In the latter case measurements have also been made for CFC-113/air mixtures. The heat transfer rate was calculated from the coolant flow rate and temperature rise, the latter measured using a 10-junction thermopile with careful attention paid to adequate coolant mixing and isothermal immersion of the thermopile leads. The surface temperature was found from thermocouples embedded in the tube wall. One plain tube, nine microfin tubes (with different fin heights, helix angles, and number of fins), and four twisted-wire inserts (with different wire densities) were tested. Enhancement ratios (i.e., vapor-side heat transfer coefficient for the enhanced tube divided by that for a smooth tube at the same vapor-side temperature difference and vapor inlet velocity) between 1.6 and 5.6 for the microfin tubes and between 1.2 and 1.6 for the twisted-wire inserts were found, with values depending on vapor-side temperature difference, vapor inlet velocity, and air inlet mole fraction in the case of CFC-113/air mixtures. The microfin tubes showed moderate pressure-drop penalties of around 50% compared to the plain tube, while the twisted-wire inserts showed increasing pressure-drop penalty with increasing wire density.  相似文献   

4.
This paper presents an experimental study of waste heat recovery shell-and-tube heat exchangers. The exchanger heat duty, overall heat transfer coefficient, effectiveness and tubeside friction factor are investigated as functions of the tube surface geometry (plain or dimpled), the flow type (counter or parallel), the tube Reynolds number and the shellside heat capacity rate. Water and the exhaust gases of a Diesel engine are passed inside the tube and the shell, respectively.The heat transfer characteristics increase with an increase in tube Reynolds number and the shellside heat capacity rate, for all the flow types and the surface geometries examined. The counter-flow, shell-and-dimpled-tube heat exchanger, compared with that exchanger having a plain tube, increases the heat duty and the overall heat transfer coefficient by 80%, and the heat exchanger -effectiveness increases by 35%. For the parallel-flow, shell-and-dimpled-tube heat exchanger, the heat duty, the overall heat transfer coefficient and the effectiveness increase by 30, 55, and 25%, respectively. At the same time the dimpled tube increases the tubeside friction factor by 600% over that of the plain tube. The rate of waste heat recovered from the exhaust gases of the Diesel engine by the counter-flow, shell-and-dimpled-tube heat exchanger is equal to 10% of the maximum brake power of the engine running at 1500 rpm, and the tube Reynolds number equal to 8875.  相似文献   

5.
This article communicates the thermal performance, heat transfer rate, and friction factor of Al2O3/DI water nanofluids at different concentrations in a micro-finned tube with tube helical inserts for different twist ratios. The thermal performance, heat transfer coefficient, and friction of the present study is also compared with a plain tube for validation. From the study, it is identified that the micro-finned tube with tube insert performance is higher as compared with a plain tube. Similarly, an empirical relation for Nusselt number (Nu) and friction factor (f) is estimated for straight twisted tube and left-right combination. The deviation between experimental and theoretical values for left-right twist and straight twist is found as 3 and 7% for Nusselt number and 7 and 9% for friction factor, respectively. Similarly, while analyzing the thermal performance, it was found that the maximum performance achieved was with a micro-fin tube with left-right twist with nanofluid concentration of 0.2%.  相似文献   

6.
This article reports an experimental investigation on the heat transfer, friction factor, and thermal enhancement factor of a tube equipped with vertical wing-cut twisted tapes, horizontal wing-cut twisted tapes, and plain twisted tapes with twist ratios of y = 2.0, 4.4, and 6.0. The obtained results reveal that the heat transfer rate, friction factor, and thermal enhancement factor in the tube equipped with horizontal wing-cut twisted tapes are significantly higher than those in the tube fitted with vertical wing-cut twisted tapes, plain twisted tapes, and a plain tube. An empirical correlation is subsequently derived from the experimental results.  相似文献   

7.
波纹管污垢特性的试验研究   总被引:8,自引:0,他引:8  
波纹管是一种有效的强化换热元件,在工业上有广泛的应用。本研究采用半工业性对比实验研究了波纹管的污垢特性。试验结果表明:波纹管的抑制污垢性能要优于光管。  相似文献   

8.
The heat transfer, pressure drop, and overall performance specification of a straight circular tube fitted with vortex-generator inserts are investigated experimentally. To modify the thermal-hydraulic performance, the longitudinal spacing of winglets is varied along the flow direction. The experiments are performed in the turbulent regime (7,470 ≤ Re ≤ 18,670). Good agreement is obtained when the results are compared and validated with previous correlations proposed for the plain tube. The results show that the use of vortex-generator inserts inside the tube yields a higher heat transfer coefficient and pressure drop than the plain tube, and these parameters augment with increasing the number of winglets. The effect of variation of longitudinal spacing of winglets along the vortex-generator inserts on the heat transfer coefficient is higher that the pressure drop. It is also detected that the variation of this parameter affects each arrangement of winglets exclusively.  相似文献   

9.
对一种斜翅型外翅片带内螺纹的冷凝强化换热管进行传热性能的实验研究。管外冷凝换热的制冷剂为R134a,管内对流换热的介质为水。分别在定热流密度与定水流速的条件下进行一系列工况的实验,得到相应的实验数据。在定热流密度条件下,利用Wilson图解法得到管内的换热系数数据及相应的计算关联式。在定水流速的条件下,利用分离方法得到管外冷凝换热系数数据及相应的计算关联式。将强化管换热系数数据与光管换热系数的理论计算值进行了比较,结果表明:冷凝强化换热管管内对流换热的强化倍率为2.4,管外凝结换热系数随壁面过冷度的增加而增大,管外凝结换热的强化倍率为:1.78~3.92。  相似文献   

10.
非均匀加热条件下内插扭带管强化传热模拟分析   总被引:2,自引:0,他引:2  
以水为工作介质,采用欧拉多相流模型和非平衡沸腾模型,当流速在0.3~0.7m·s-1范围内、工作压力为4.5MPa、热流密度为2MW·m-2时,数值模拟了内插扭带管和光管管内流动过冷沸腾传热.对比了两种管道的换热系数、气泡份额、流动速度、流场流线、固体组件温度和压降,分析了内插扭带管的综合性能.结果表明,与光管相比较,...  相似文献   

11.
内螺旋肋管流动与传热特性的实验研究   总被引:4,自引:0,他引:4  
对六种内螺旋肋管进行了流动与传热的实验研究,实验管内径为16.25-16.69 mm,内螺旋肋高为0.28-0.44 mm,螺旋肋牙数为40-45,螺旋角为43°-45°.研究表明,内螺旋肋管可以有效地强化传热,本文所研究的管型的传热强化倍率为1.67-2.99.比较了两种评价内螺旋肋管性能的方法.用Webb模型及Ravigururajan模型对内螺旋肋管进行了性能预测并与实验值进行了比较.两个模型的预测值与本试验结果有较大偏差,相对而言,传热模型稍优.  相似文献   

12.
空气-水蒸气流经扰流圈的冷凝传热强化   总被引:1,自引:0,他引:1  
本文对含高浓度不凝组分存在条件下水蒸汽冷凝传热强化进行了机理分析和实验.结果表明,扰流圈能大大增加气液边界层的湍动强度,具有优越的强化传热、传质效果.在实验范围内,其冷凝传热膜系数是光滑管的1.9~3.5倍.  相似文献   

13.
波纹板式空冷器阻力与传热特性实验研究   总被引:5,自引:0,他引:5  
在可改变风量和热水流量的实验条件下,对波纹板式空冷器的阻力与传热特性进行实验研究。得到了空气侧的阻力降关联式以及两侧的对流换热系数关联式,其适用于热水雷诺数在2000-8000之间、空气雷诺数在2000-10000之间。在相同工况下,比较了波纹板式、光管式和翅片管式空冷器的性能指标,结果表明:迎面风速在2.45-4.1 m/s之间,波纹板式空冷器传热系数达到100-160 W/m2/℃;约比光管式提高70%,但只有以管束外表面为基准的翅片管式传热系数的六分之一;板式空冷器单位体积换热量约是翅片管式空冷器的1.5倍,是光管式的15倍;板式空冷器单位功耗换热量约是光管式空冷器的5.5倍,而翅片管式空冷器与光管式空冷器则相差不大。  相似文献   

14.
M. A. Omara 《实验传热》2013,26(5):691-706
Heat transfer characteristics and friction factor in the horizontal double pipes of a flat tube with full and varied spacer length helical screws at various rotational speeds are investigated for Reynolds numbers ranging from 580 to 1,582. The heat transfer and friction factor of the inserted tube are significantly increased compared to those of the plain tube. The Nusselt number, friction factors, and thermal enhancement efficiency were increased with decreasing spacer length at increasing rotational speed under the same operating conditions.  相似文献   

15.
Convective heat transfer coefficients were measured experimentally for a tube immersed vertically in a circulating fluidized bed. Circulating fluidized beds operate in the dilute transport regime of two-phase (solid/gas) flow. The dominant mechanism for heat transfer to surfaces is particle-induced convection. In this study, experiments were carried out in a circulating fluidized bed of15 cm diameter and 11 m height. An instrumented tube of 9.5 mm diameter and 1.3 m length was placed vertically at the centeriine of the fluidized bed to measure convective heat transfer coefficients at several different elevations in the bed. Three types of particles, with mean diameters ranging from 68 to 2S1 urn, were used in the experiments at superficial gas velocities in the range of 1.3 to 8.2 m/s. Results showed that the convective heat transfer coefficients with solid/gas two-phase circulation were two to three times greater than those for single-phase gas convection at the same velocity. For a given gas velocity, the coefficients increased with increasing solid mass flux, but decreased with elevation. It was demonstrated that the heat transfer coefficients for the immersed tube and for the bed wall could be correlated with different functional dependence on the two-phase suspension density.  相似文献   

16.
工业烟气含尘的特点易导致换热器积灰,进而制约烟气余热的高效回收。本文针对一种具有超大拓展表面的三维微肋管换热器的对流换热与积灰特性进行了研究。首先,对比研究了光管与三维微肋管的对流换热特性;接着,基于所建立的积灰数值模型,探究了三维微肋管的积灰特性,并揭示了烟气流速与飞灰粒径对其积灰特性的影响规律。结果表明,相对于传统光管,三维微肋管的换热面积可增大约2.9倍;换热性能平均能提高16%;积灰后渐进污垢热阻最大能减小70%;同时,清灰周期更长,运行经济性更佳。综合而言,三维微肋管相比传统光管,在增强换热的同时,还能有效减轻积灰,因此可作为高效的抗积灰传热元件,应用于含尘烟气的余热回收场合。  相似文献   

17.
实验室里进行了缩放管与对应光管管内混合污垢的对比实验,实验工质为加有MgO或CaSO颗粒的人工硬水.实验结果表明:在相同流速、浓度条件下,与对应光管相比,缩放管不仅有较好的阻垢性能,还有较好的传热性能;流速、颗粒浓度和颗粒粒径对混合污垢热阻有较大影响:增大流速、减小颗粒浓度、增大颗粒粒径都会使缩放管混合污垢热阻的渐近值减小.  相似文献   

18.
以常压去离子水为工质,对自然循环工况下上升加热段内单相水的摩擦阻力及对流传热特性进行了实验研究.结果表明,自然循环工况下加热段内由浮升力引起的自由流动对摩擦阻力及对流传热特性有重要影响,自然循环与强制循环二种工况下加热段内的摩阻系数及对流换热系数存在明显差别;并且,自然循环工况下加热段内的摩擦阻力存在滞后现象.通过实验提出了计算自然循环工况下加热段内单相水的摩阻系数及对流换热系数的经验关系式.  相似文献   

19.
An experimental investigation was carried out on the boiling heat transfer characteristics of water and R-11 on the outside of a horizontal heated tube in narrow spaces. Two kinds of heat transfer surfaces (roll-worked and smooth surfaces) were tested. The test section consisted of a narrow annular space formed by enclosing the heated tube in an isolated concentric outer tube with two horizontal slats on the top and bottom. The nucleate boiling heat transfer characteristics were investigated experimentally at atmospheric pressure. The experimental results indicated that a single roll-worked tube in bulk liquid showed better boiling heat transfer than a single smooth tube. In the narrow spaces, the boiling heat transfer coefficients for the smooth tube were considerably enhanced when the gap size was so selected as to take an optimum value. There was no clear optimum gap size for heat transfer enhancement for the roll-worked tube in the narrow spaces. Enhancement of boiling heat transfer in the narrow spaces for the roll-worked tube was not clearly observed in this experiment. Finally, the critical heat flux (CHF) for boiling heat transfer in narrow spaces can be predicted by using a proposed CHF correlation.  相似文献   

20.
The CFD simulation of heat transfer characteristics of a nanofluid in a circular tube fitted with helical twist inserts under constant heat flux has been explained using Fluent version 6.3.26 in laminar flow. Al2O3 nanoparticles in water of 0.5%, 1.0% and 1.5% concentrations and helical twist inserts of twist ratios 2.93, 3.91 and 4.89 has been used for the simulation. All thermophysical properties of nanofluids are temperature dependent. The heat transfer enhancement increases with Reynolds number and decreases with twist ratio with maximum for the twist ratio 2.93. By comparing the heat transfer rates of water and nanofluids, the increase in Nusselt number is 5%–31% for different helical inserts and different volume concentrations. The maximum heat transfer enhancement is 31.29% for helical insert of twist ratio 2.93 and for the volume concentration of 1.5% corresponding to the Reynolds number of 2039. The data obtained by simulation match with the literature value of water with the discrepancy of less than ±10% for plain tube and tube fitted with helical tape inserts for Nusselt number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号