首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
微细光滑管内气体的流动与传热特性研究   总被引:5,自引:0,他引:5  
在评述当前微细管内流动和换热特性研究的基础上提出了需考虑流体压缩性对速度剖面的影响。可压缩流动守恒方程组的数值解结果表明:运动流体的压缩性不仅使管内平均流速增加,而且使速度剖面更加饱满,从而使局域阻力系数和换热系数增加。与此同时,尽管管道的长细比很大,亦不可能出现充分发展的速度和温度剖面。这是由于微细管道中由于阻力引起的压力降可以很大,它所引起的流动加速达较大马赫数时,压缩性对阻力系数和传热系数的影响就不能忽略。  相似文献   

2.
Z. Liu  C. Zhang  Y. Huo  X. Zhao 《实验传热》2013,26(4):289-306
Abstract

This article investigates the flow and heat transfer characteristics in micro steel tubes with inner diameters of 168 μm, 399 μm and relative roughness of 3.5% and 2.7%, respectively, by measuring the friction factors and the Nusselt number from laminar state to transitional state. Experiments show that the experimental Nusselt numbers are less than those predicted by the classical laminar correlation due to the effect of the variation of the thermophysical properties with temperature when Reynolds number is low. As the Reynolds number is higher than 800, the experimental Nusselt number are 25–50% higher than the predictions of the classical laminar and transitional correlations due to the effects of the roughness and the entrance length. The transition from laminar to turbulent flow occurs at the Reynolds number of 1,100–1,500.  相似文献   

3.
An experimental study was performed to determine the heat transfer characteristics of a premixed butane/air round flame jet, of low Reynolds number, impinging upwards normally on a flat rectangular plate. The effects of the exit Reynolds number and equivalence ratio of the flame jet, and the distance between the nozzle and the impingement plate, on the thermal performance of the jet were examined. The range of Reynolds numbers was selected to cover the laminar to the transitional flow conditions. The investigations were conducted with equivalence ratios corresponding to the fuel-rich, stoichiometric, and fuel-lean conditions. The nozzle-plate distance was varied from 1d to 8d. Within the range of Reynolds numbers investigated, the highest Nusselt numbers were obtained at the equivalence ratio of φ = 0.85 when the nozzle-plate distance was maintained at 5d. At the stoichiometric condition, the highest Nusselt number was obtained at the nozzle- plate distance of 6d. Nondimensional correlations were obtained from the experimental results and presented to predict the maximum Nusselt number and average Nusselt number for laminar flame jets as a function of the nozzle-plate distance, Reynolds number, and equivalence ratio.  相似文献   

4.
N. Onur  K. Arslan 《实验传热》2015,28(1):89-105
In this study, steady-state laminar forced flow and heat transfer in a horizontal smooth trapezoidal duct having different corner angles were experimentally investigated in the Reynolds number range from 102 to 103. Flow is hydrodynamically fully developed and thermally developing under a uniform surface temperature condition. Based on the present experimental data of laminar flow in the thermal entrance region, new engineering correlations were presented for the heat transfer and friction coefficients for each corner angle. The results have shown that as the Reynolds number increases heat transfer coefficient increases but Darcy friction factor decreases. Also, it is observed that average Nusselt number increases while average Darcy friction factor decreases with increasing corner angle of the duct.  相似文献   

5.
刘东  李佳蓬  何蔚然  胡安杰  蒋斌 《强激光与粒子束》2018,30(11):111001-1-111001-7
引入潜热型功能热流体替换现有传统工质冷却大功率激光器,实验研究了潜热型功能热流体与传统工质去离子水在高4 mm、宽2 mm、间距1 mm的微针肋内的层流流动换热特性。结果表明:在雷诺数Re为625~1125范围内,潜热型功能热流体均表现出比水更好的冷却性能及更低的壁面温度,且存在最佳的质量分数值;相同工况下,潜热型功能热流体平均努谢尔数Nu大于去离子水,平均努谢尔数Nu随着雷诺数Re的增加而增加。拟合了平均努谢尔数与流体雷诺数、普朗特数、质量分数的经验的关系式,最大偏差为16.9%,可以较好反映潜热型功能热流体的换热特性;潜热型功能热流体沿着流动长度的方向存在一个稳定的局部换热强化区,且强化换热存在最佳的长度。  相似文献   

6.
This article presents an experimental study of thermo-hydrodynamic phenomena in a microchannel heat exchanger system. The aim of this investigation is to develop correlations between flow/thermal characteristics in the manifolds and the heat transfer performance of the microchannel. A rectangular microchannel fabricated by a laser-machining technique with channel width and hydraulic diameter of 87 μm and 0.17 mm, respectively, and a trapezoidal-shaped manifold are used in this study. The heat sink is subjected to iso-flux heating condition with liquid convective cooling through the channels. The temporal and spatial evolutions of temperature as well as total pressure drop across the system are monitored using appropriate sensors. Data obtained from this study were used to establish relationships between parameters such as longitudinal wall conduction factor, residence and switching time, and thermal spreading resistance with Reynolds number. Result shows that there exist an optimum Reynolds number and conditions for the microchannel heat exchanger system to result in maximum heat transfer performance. The condition in which the inlet manifold temperature surpasses the exit fluid temperature results in lower junction temperature. It further shows that for a high Reynolds number, the longitudinal wall conduction parameter is greater than unity and that the fluid has sufficient dwelling time to absorb heat from the wall of the manifold, leading to high thermal performance.  相似文献   

7.
The flow and the heat transfer characteristics in a quartz microtube with an inner diameter of 0.0196 mm are investigated experimentally. Measuring the pressure drop between the inlet and outlet of the microtube and the average temperature of the microtube wall heated by steam when the working fluid is distilled water, the corresponding friction factors and Nusselt number are obtained. The experimental results show the friction factors in the microtube exceed those of the Hagen–Poiseuille prediction due to the predominance of the effects of the electrical double layer and the entrance. Also, the experimental Nusselt number is less than the classical laminar at Reynolds number < 500 due to the effect of the variation of the thermophysical properties with the temperature.  相似文献   

8.
Fluid flow and heat transfer characteristics of single-phase flows in microchannels for refrigerant R-134a were experimentally investigated. Experiments were conducted using rectangular channels micromilled in aluminum with hydraulic diameters ranging from approximately 112 to 210 w m and aspect ratios that varied from 1.0 to 1.5. Using overall temperature, flow rate, and pressure drop measurements, friction factors and convective heat transfer coefficients were experimentally determined for steady flow conditions. Effects of Reynolds number, relative roughness, and channel aspect ratio are examined in predicting friction factor and Nusselt number for the experiments. Experiment results indicated that transition from laminar to turbulent flow occurred between a Reynolds number of 2,000 and 4,000. Friction factor results were consistently lower than values predicted by macroscale correlations but exhibited the same trends with Reynolds numbers of macroscale correlations. Nusselt number results also exhibited a similar pattern of lower values obtained in the experiments than those predicted by commonly used macroscale correlations. Nusselt number results also indicated that channel size may suppress turbulent convective heat transfer and surface roughness may affect heat transfer characteristics in the turbulent regime.  相似文献   

9.
H. Gül 《实验传热》2013,26(1):73-84

An experimental investigation was made to study heat transfer in a pipe which is oscillated about an axis that is parallel to, but offset from, the pipe axis. Air was used as working fluid. The experimental setup was designed so as to provide oscillating motion of a test pipe. The measurement systems were installed on the oscillating section. For both steady and oscillating flows, the bulk air temperature and wall temperature, pressure drop, and frequency were measured. The parameters for this study were chosen as Reynolds number from 5,000 to 20,000 and oscillating frequencies from 10 to 20 Hz. The variations of Nusselt number versus these parameters were determined and presented graphically. Heat transfer enhancement of 42% was achieved at constant pumping power for oscillatory flow.  相似文献   

10.
Experimental studies on friction factor and heat transfer characteristics for the laminar flow of ethylene glycol in a square duct fitted with twisted tapes of different twist ratios under nearly uniform wall temperature conditions are reported in this article. The Nusselt numbers were found to be 5.44–7.49 and 2.46–4.87 times that of plain square duct forced convection values based on constant flow rate and constant pumping power criteria, respectively, for y = 2.66. The augmented friction factor and Nusselt number for a square duct is about 1.9 and 2.10 times higher than that for an augmented circular tube.  相似文献   

11.
气体在微圆管内层流换热的壁面效应的研究   总被引:4,自引:0,他引:4  
微通道内流体流动与换热规律不同于常规尺度,这可归因于“贴壁层”流体分子与壁面相互作用的影响.当通道尺度小到与分子自由程可比时,贴壁层影响就不能忽略,贴壁层内流体的输运性质将不同于贴壁层以外流体的输运性质.在已求得贴壁层内气体粘度变化的基础上也同样可求得贴壁层内气体导热系数的变化.以此为基础,求解了微圆管内气体完全发展的层流换热。  相似文献   

12.
An experimental investigation has been carried out to study the enhancement in heat transfer coefficient by inserting coiled wire around the outer surface of the inner tube of the double-pipe heat exchanger. Insulated wires, with a circular cross-section of 2 mm diameter, forming a coil of different pitches (p = 6, 12, and 20 mm), were used as turbulators. The investigation is performed for turbulent water flow in a double-pipe heat exchanger with cold water in the annulus space for both parallel and counter flows. The experiments were performed for Reynolds numbers ranging from 4,000 to 14,000. The experimental results reveal that the use of coiled circular wires leads to a considerable increase in heat transfer coefficients compared with a smooth wall tube for both parallel and counter water flows. The mean Nusselt number increases with Reynolds number and pitch. The convective heat transfer coefficient for a turbulent water flow increases for all coiled wire pitches, with the highest enhancement of about 450% for counter flow and 400% for the parallel flow. New correlations for mean relative Nusselt numbers at different coiled wire pitches are provided.  相似文献   

13.
空气横掠波纹管束流动与传热性能的数值模拟   总被引:7,自引:0,他引:7  
本文应用层流模型和湍流模型的数值模拟方法,对空气外掠8排波纹管束时的流动与传热性能进行了研究,并将数值结果与实验结果进行了对比,结果表明:层流模型数值模拟结果较湍流更接近于实验值。同时,对两种模型的数值模拟结果拟合出了Nu-Re的关联式。  相似文献   

14.
微型管内流动特性的实验研究   总被引:5,自引:0,他引:5  
以四氯化碳作为工质,流经内径分别为0.168 mm、0.399 mm、0.799 mm不锈钢管及内径分别为0.242 mm、0.315 mm、0.520 mm石英玻璃管,测量压降与流量的关系,从而获得摩擦因子f与雷诺数Re的关系。实验结果表明, 当雷诺数Re小于1600-1800时,除内径为0.168 mm的不锈钢管外,别的内径的微管内的摩擦因子与经典层流理论值几乎一致,而内径为0.168 mm的不锈钢管由于更大的相对粗糙度(8%-10%左右),其f值比经典理论值高约5%-10% 左右。当雷诺数Re越过1800时,f的值明显偏离经典层流理论值。  相似文献   

15.
壁面轴向导热对微细管内对流换热的影响   总被引:1,自引:0,他引:1  
本文通过数值解析的方法研究了考虑壁面轴向导热时微细管内的对流换热。结果表明,当管外为对流换热边界条件时,管内充分发展对流换热的Nu依然在3.66~4.36之间。但若忽略壁面轴向导热,采用一维热阻模型整理微细管内对流换热的实验数据将会导致错误的结论。  相似文献   

16.
An experimental study on heat transfer characteristics of steam and air flows in a V-shaped ribbed channels was conducted. The effects of Reynolds numbers and rib angles on heat transfer of steam and air were obtained. The area-averaged Nusselt numbers of steam flow at a Reynolds number of 12,000 were 13.9%, 20.6%, 27.1%, and 27.9% higher than those of air flow for rib angles of 90°, 75°, 60°, and 45°, respectively. The correlations for Nusselt number in terms of Reynolds number and rib angle for steam and air in V-shaped ribbed channels were developed.  相似文献   

17.
The Prandtl number, Reynolds number and Nusselt number are functions of thermophysical properties of nanofluids, and these numbers strongly influence the convective heat transfer coefficient. The thermophysical properties vary with volumetric concentration of nanofluids. Therefore, a comprehensive analysis was performed to evaluate the effects on the performance of nanofluids due to variations of density, specific heat, thermal conductivity and viscosity, which are functions of nanoparticle volume concentration. Three metallic oxides, aluminum oxide (Al2O3), copper oxide (CuO), and titanium dioxide (TiO2), dispersed in water as the base fluid were studied. A convenient figure of merit, known as the Mouromtseff number, is used as a base of comparisonfor laminar and turbulent flows. The results indicated that the considered nanofluids can successfully replace water in specific applications for a single-phase forced convection flow in a tube.  相似文献   

18.
In this investigation, the behavior of non-Newtonian nanofluid hydrodynamic and heat transfer are simulated. In this study, we numerically simulated a laminar forced non-Newtonian nanofluid flow containing a 0.5 wt% carboxy methyl cellulose (CMC) solutionin water as the base fluid with alumina at volume fractions of 0.5 and 1.5 as the solid nanoparticle. Numerical solution was modelled in Cartesian coordinate system in a two-dimensional microchannel in Reynolds number range of 10≤Re≤1000. The analyzed geometrical space here was a rectangular part of whose upper and bottom walls was influenced by a constant temperature. The effect of volume fraction of the nanoparticles, Reynolds number and non-Newtonian nanofluids was studied. In this research, the changes pressure drop, the Nusselt number, dimensionless temperature and heat transfer coefficient, caused by the motion of non-Newtonian nanofluids are described. The results indicated that the increase of the volume fraction of the solid nanoparticles and a reduction in the diameter of the nanoparticles would improve heat transfer which is more significant in Reynolds number. The results of the introduced parameters in the form of graphs drawing and for different parameters are compared.  相似文献   

19.
A series of experimental investigations by using the transient liquid crystal method on the studies related to the convective heat transfer in rectangular channels with different wall material types have been successfully performed. The results show that the local and average Nusselt numbers on the test channel surface for wall material type (II) are higher than those for wall material type (I). The effect of the steady-state air preheating temperature on average Nusselt numbers is not significant, while the average Nusselt numbers increase with increasing Reynolds number in a power of 0.627. Furthermore, two empirical Nu correlations for channels with wall material type (I) and type (II) are respectively proposed in this study.  相似文献   

20.
H. Gül 《实验传热》2013,26(1):24-37
An experimental study was performed focusing on heat transfer and friction coefficient associated with turbulent oscillating tube flow. For this goal an oscillating mechanism was designed. Experiments were conducted for the low oscillating frequency in the range of 0.008–1.988 Hz and dimensionless amplitude was chosen as X0 = 0.3, 0.6, and 0.9. Reynolds number was changed from 0.5 × 104 to 2.5 × 104. The bulk temperature of the fluid at the exit of the oscillating section was fond to be increasing with oscillating frequency and amplitude. For the oscillating cases, heat transfer enhancement is obtained 52% for f = 1.988 s?1, 40% for f = 1.320 s?1, and 28% for f = 0.008 s?1, in comparison with the smooth pipe at the highest Reynolds number. The results also showed that Nusselt number and friction coefficient also increased with increasing frequency and amplitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号