首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methane chemical ionization (CI) mass spectra for a series of ten polycyclic chlorinated insecticides and metabolites have been examined. In all cases except heptachlor epoxide the base peak corresponded to elimination of Cl, or OH from the molecule ion. In the spectrum of heptachlor epoxide the [M + H]+ and [M ? Cl]+ clusters were of approximately equal intensity. The CI spectra were remarkably simple, invariably less complex than the corresponding electron-impact (EI) mass spectra and the intensity of the ions with high information content, e.g. [M ? CI]+ was uniformly high. All of these features are important to the analytical potential of these studies. Retro Diels-Alder (RDA) fragments were observed for the chlordanes, aldrin, isodrin, nonachlor and heptachlor epoxide. The reported preliminary data suggest that the relative intensity of RDA ions in CI mass spectra may be useful in establishing molecular configurations.  相似文献   

2.
The electron capture mass spectra of 28 35Cl-labeled polychlorinated biphenyls (PCBs) and 4 37Cl-labeled 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) metabolites were obtained by using a 20% oxygen in methane mixture as the reagent gas. The degree of regioselectivity of the PCB oxygen addition-induced dechlorination reaction was determined by measurement of the residual amount of label in the M-19 ions produced by addition of O2 and subsequent loss of OCl from the molecule. Chlorine was lost in a random manner from the PCBs, contrary to the dechlorination reaction observed when methane alone was used. For the DDT metabolites, many dechlorination reactions were observed in addition to the one that generated the M-19 ions. Loss of Cl, loss of Cl2, and addition of O2 with the loss of one or two HCl molecules also were seen. These various dechlorination reactions involved only the aliphatic chlorines. Addition of O2 followed by loss of Cl at the beta position of 2,2-bis(4-37Cl-chlorophenyl)-1-chloroethylene and 2,2-bis(4-37Cl-chlorophenyl)-1,1-dichloroethylene may be due to the ability of the diphenyl methane moiety to stabilize the intermediates. Formation of an ion that corresponds to 4,4′-dichlorobenzophenone also was observed for three of these labeled DDT metabolites.  相似文献   

3.
The action of 1,10-phenanthroline (phen) on the THF solutions of RHgCl (R = 2,5-C6H3Cl2; 2,3,4? and 2,4,6-C6H2Cl3; 2,3,4,5?, 2,3,4,6?, and 2,3,5,6-C4HCl4 and C6Cl5) gives RHgCl (phen) when R contains two chlorine substituents in ortho (R = 2,4,6-C6H2Cl3; 2,3,4,6?, and 2,3,5,6-C6HCl4 and C6Cl5), but the symmetrisation reaction occurs when R = 2,5-C6H3Cl2; 2,3,4-C6H2Cl3 and 2,3,4,5-C6HCl4. The action of phen on HgR2 only gives HgR2 (phen) when R = 2,3,4,5-C6HCl4. Compounds of the type RHgMe do not react with phen. These results indicate that steric citects are as important as the electronegativity of R in the formation of tetracoordinated mercury compounds.  相似文献   

4.
Methane or a methane–oxygen mixture was used as an enhancement gas to obtain negative ion mass spectra of polychloroanisoles. Dichloroanisoles did not react with oxygen but the more highly chlorinated anisoles did. Compounds with hydrogen ortho to the methoxy group had [M? 1]? ions, while others gave . The fragment arose through loss of an ortho chlorine and amethyl hydrogen. The loss of HCl followed by oxygen displacement of a remaining ortho or para chlorine produced [M? 55]? ions; the para position was the preferred site of displacement. Another ion-molecule reaction with oxygen leads to [M? CH2Cl]?. The fragmentations resemble those of chlorinated aromatics such as the polychlorodibenzodioxins.  相似文献   

5.
The methane negative-ion chemical ionization (NCI) mass spectrum of chlorprothixene shows an unusual MH? ion. This ion can be accounted for by electron capture followed by H˙ transfer from the reagent gas. The most probable site of electron attachment was concluded to be related to the sulfur atom of the thioxanthene ring based on the observation of analogous ions for structurally related compounds, all containing a heterocyclic sulfur. The MH? ion observed with methane as the reagent gas was shifted to MD? when tetradeuteromethane was used in place of methane. The ratio of [M ? H]? to MH? did not change with emission current suggesting that the process is independent of the radical concentration in the CI plasma. Consistent with this observation is the lack of CH3˙ or C2H5˙ adduct ions in the NCI mass spectrum and the fact that gold-plating the ion source did not decrease the proportion of MH?. Also, this mechanism is consistent with thermochemical considerations of reactions of a phenyl radical with various alkanes and observations of ions formed by methane NCI from model compounds. Therefore, unlike other MH? ions observed in methane NCI mass spectra, the mechanism of formation does not appear to involve a hydrogen radical addition followed by electron capture.  相似文献   

6.
High resolution photoabsorption spectra of HCl and Cl2 have been measured near the chlorineK edge in the 2810–2850 eV photon energy range. Below the ClK edge, the strongest resonance is interpreted as a simple core excitation into the unoccupied σ* valence orbital for both molecules, leading to a markedly repulsive state. Higher resonances due to low lying Rydberg states, are observed in both systems, but with a larger oscillator strength for HCl as compared to Cl2. In Cl2, the σ* orbital is deep enough to avoid any mixing with Rydberg orbitals. In HCl, we observe the dipole forbidden Cl 1s → 4s transition which denotes a strong 4s–4p hybridization. Above the ClK edge, the multiplet features seen for HCl are analysed in terms of double-core-valence excited vacancy states. In Cl2, their counterpart are found very close to the ionization threshold because of the deep σ* orbital and possibly because the excited core and valence electrons originates either from the same atomic site or from different ones.  相似文献   

7.
The reaction of trichloroethylene (C2HCl3) with water vapor or molecular hydrogen has been studied in a low-pressure [ca. 5 Torr (0.67 kPa)] microwave plasma tubular flow reactor. The experimental apparatus included feed introduction systems, a microwave plasma reactor, and full product analysis by flame ionization and thermal-conductivity gas chromatography, mass spectrometry, and specific ion or pH detection for hydrogen chloride [HCl]. Conversions of C2HCl3 in the range 50 to almost 100% are achieved. Product analyses indicate conversion to HCl, some light hydrocarbons, nonparent chlorocarbons, and soot C(s). For the H2O case, carbon monoxide and trace carbon dioxide were produced in place of some light hydrocarbons and C(s). At least 85 mole % of chlorine (Cl) from the converted parent C2HCl3 forms thermodynamically stable HCl at parent conversions of 80% or more. The remaining chlorine was present as nonparent chlorocarbons. Preliminary kinetic analyses were performed. The global reaction in the plasma was found to follow one-half-order kinetic dependence on each of C2HCl3 and H2O or H2. Elementary plasma reaction mechanisms are presented to account for C2HCl3 conversion and the observed product distribution.  相似文献   

8.
The chemical ionization mass spectra of several hydroxy steroids were obtained using methane as the reactant gas. The spectra are much less complex than the electron ionization spectra and little fragmentation of the steroid nucleus is observed. The major fragment ions involve the loss of water from [M + H]+. A 3-keto group in the steroids was characterized by an abundant [M + C2H5]+ ion. 5α- and 5β-Dihydrotestosterone could be distinguished by their spectra, with H2 as the reactant gas by marked differences in amounts of [M + H]+, [M + H ? H2O]+ and [M + H ? 2H2O]+. Substituted 3α-X-, 17 β-ol compounds, (X = Cl, Br) were also studied to obtain relative amounts of protonation at these sites.  相似文献   

9.
Internal rotation about the P?C bonds in the Cl2PCH=CH2 and Cl2PCH=CMe2 molecules is diseussed. It is shown that the cis (with eclipsed C=C bonds and lone electron pair of the phosphorus atom) and eclipsed conformers of the Cl2PCH=CH2 molecule are in equilibrium. The geometrical parameters and conformation compositions are refined. The content of the cis conformer is 40%. The Cl?P?C=C torsion angles are ±128.5° for the cis conformer and ?29.6 and ?132.6° for the eclipsed conformer. The Cl2PCH=CMe2 molecule occurs only in the cis form. For Cl2PCH=CMe2, the geometrical parameters are as follows: bond lengths C?H=1.124(11), C=C=1.322(8), P?C=1.789(3), and P?Cl=2.042(2) Å; bong angles (deg) C?P?Cl=99.1(4), Cl?P?Cl=99.6(6), C=C?CH3=120.1 and 125.7, and P?C=C=122.3(9); torsion angles Cl?P?C=C=±129.3(3).  相似文献   

10.
《Chemical physics》1987,115(1):93-101
The X-ray absorption spectra of dichlorosulfide (SCl2), dichlorodisulfide (S2Cl2), thionyl chloride (SOCl2) and sulfuryl chloride (SO2Cl2) have been recorded with synchrotron radiation in the regions of S 1s and Cl 1s excitation and ionization. Ionization current spectra of SOCl2 and SO2Cl2 in the Cl 1s regions are also presented. The main spectral features are assigned to K-shell excitations to σ* orbitals associated with the SCl, SS and SO bonds in these molecules.  相似文献   

11.
The halogen bonded complexes between six carbonyl bases and molecular chlorine are investigated theoretically. The interaction energies calculated at the CCSD(T)/aug‐cc‐pVTZ level range between ?1.61 and ?3.50 kcal mol?1. These energies are related to the ionization potential, proton affinity, and also to the most negative values (Vs,min) on the electrostatic potential surface of the carbonyl bases. A symmetry adapted perturbation theory decomposition of the energies has been performed. The interaction results in an elongation of the Cl? Cl bond and a contraction of the CF and CH bonds accompanied by a blue shift of the ν(CH) vibrations. The properties of the Cl2 molecules are discussed as a function of the σ*(Cl? Cl) occupation, the hybridization, and the occupation of the Rydberg orbitals of the two chlorine atoms. Our calculations predict a large enhancement of the infrared and Raman intensities of the ν(Cl? Cl) vibration on going from isolated to complexed Cl2. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
The mass spectral fragmentations of all eleven chlorinated methyl propanoates have been studied. Deuterium labelling and metastable ion analysis were used to elucidate the fragmentation mechanism. The molecular ion peaks of all compounds are small, except methyl 3,3-dichloropanoate (38%). In most cases α-cleavage gives the base peak [COOCH3]+, and the loss of a chlorine atom from the molecular ion is characteristic of the 3-chloro, 3,3-dichloro and 3,3,3-trichloro compounds. Metastable ions showed the losses of small neutral molecules such as CH3OH, CH2CO, CO2 and CO from the [M? Cl]+ ion. α-Cleavage and the loss of Cl˙ gives an intense [M? COOCH3? Cl] peak, which is the base peak in the spectra of the 2,3-dichloro and 2,3,3-trichloro compounds.  相似文献   

13.
Aqueous matrices from Antarctica were analysed for three volatile chlorinated hydrocarbons (VCHCs): tetrachloromethane (CCl4), trichloroethylene (C2HCl3) and tetrachloroethylene (C2Cl4). The matrices analysed were snow from Rennick Nèvè and Rennick Glacier sampled during the Italian Expeditions of 1995/96 and 1996/97, respectively, and seawater, pack ice, sea-microlayer, subsuperficial water and freshwater, collected during the Italian Expedition of 1997/98. Extractions from the aqueous matrices were carried out in Antarctica (the laboratories of the Italian Base, Terra Nova Bay). Because of the critical space–time conditions in these laboratories, an extraction procedure was developed, suitable for large volumes of water (10?L), in order to combine the extraction of other classes of organic compounds (polychlorinated biphenyls, polycyclic aromatic hydrocarbons and chlorinated pesticides) with those of our direct interest. The VCHC organic extracts were analysed in Italy by GC-ECD and GC-MS. The analyses confirmed the presence of the three halocarbons in Antarctica in quantities ranging from units to some dozens of nanograms per kilogram. The results were evaluated with respect to the local distribution of these compounds and their diffusion on a global scale.  相似文献   

14.
The field ionization mass spectra of monosubstituted cyclopentenes and cyclohexenes with C1-C7 n-alkyl and C4-C5 isoalkyl substituents in positions 1 and 3 have been investigated and compared with the previously reported electron impact mass spectra of these compounds. The cleavage of the C? C bond β to the double bond in the non-isomerized molecular ion was found to be a typical degradation reaction of the higher homologues in the strong electric field. So, by means of the field ionization mass spectra, the >C1 alkyl substituent can be readily located in the parent molecule. The electron impact mass spectra exhibit a less specific fragment ion distribution for positional isomers due to the extensive molecular ion isomerization prior to decomposition, but provide useful information on the ring size. For structure determination it is appropriate to use both ionization techniques.  相似文献   

15.
Chemical ionization mass spectra of six 5,6-dihydro-2-methyl-1,4-oxathiins, and some of the sulfoxides and sulfones derived therefrom, have been determined employing hydrogen, methane and isobutane as reagent gases. The major fragmentation reaction of the protonated molecule, [R′COX·H]+, involves loss of the neutral HX molecule. For the sulfides and sulfones, with X ranging from OH to N(CH3)C6H5, it is observed that the importance of this fragmentation is inversely correlated with the proton affinity of the departing HX molecule in both the H2 and CH4 chemical ionization. For the sulfoxides no consistent correlation is observed and this is attributed to the interference of competing and/or consecutive fragmentation reactions. In the isobutane chemical ionization mass spectra only the protonated molecule is observed for most of the compounds studied.  相似文献   

16.
Nitrosyl Complexes of Molybdenum (+II). Crystal Structures of [Mo(NO)Cl3 · POCl3]2 and [AsPh4]2[Mo(NO)Cl5] · 2 CH2Cl2 Solutions of MoCl5 in POCl3 react with NOCl forming the nitrosyl compound Mo(NO)Cl3 · 2POCl3 ( I ), which in CH2Cl2 cleaves off one solvate molecule, yielding the dimeric complex [Mo(NO)Cl3 · POCl3]2 ( II ). Reaction with AsPh4Cl in dichloro methane leads to the nitrosyl complexes AsPh4[Mo(NO)Cl4] · CH2Cl2 ( III ) and [AsPh4]2[Mo(NO)Cl5] · 2CH2Cl2 ( IV ), respectively. The i.r. spectra are recorded and assigned. [Mo(NO)Cl3 · POCl3]2 crystallizes monoclinic in the space group P21/c with two dimeric units per unit cell. The crystal structure was determined by X-ray diffraction methods (R = 0.040; 1391 observed, independent reflexions). Complex II is linked by chlorine bridges, forming a dimeric, centrosymmetric molecule of symmetry Ci. The N? O bond of the nitrosyl ligand is extremely short (108 pm), the Mo? N bond (181 pm) corresponds to a double bond. In trans position to the NO ligand, which is coordinated in linear array, there is the O atom of the solvate molecule POCl3. [AsPh4]2[Mo(NO)Cl5] · 2 CH2Cl2 crystallizes triclinic in the space group P1 with two units per unit cell (R = 0.039; 1967 observed, independent reflexions). The molybdenum atom is coordinated octahedrally by five Cl ligands and a nitrosyl group, as well coordinated in linear array (Mo? N? O 174°). The nitrosyl ligand exerts a significant trans-effect (r Mo? Cl(trans) = 247 pm, r MoCl4(eq)(average) = 239 pm).  相似文献   

17.
Negative-ion chemical ionization (NCI) and collisionally activated mass spectra are presented for heptafluorobutyryl (HFB) esters of eight trichothecenes. The ion-source conditions have a dramatic effect on the NCI spectra and only at low source temperatures can intense parent ions, i.e., M? for bis- and tris-HFB esters (neosolaniol, HT-2 Toxin, monoacetosyscirpenol, fusarenon-X and deoxynivalenol) and [M-HF]? for mono-HFB esters (T-2 Toxin, Iso-T-2 Toxin, and diacetoxyscirpenol), be generated. High selectivity and a sensitivity down to picogram (0.2-2pg) levels were achieved with gas chromatography/NCI tandem mass spectrometry. Application to a spiked oats sample is described.  相似文献   

18.
On Phosphazo Compounds from Nitriles. IV. The Reaction of Tri, Di, and Monochloroacetonitrile with [Cl3P?N? PCl3]Cl. Improved Preparation of [Cl3P?N? PCl3]Cl Trichloroacetonitrile reacts with P2NCl7 to give Cl3C? CCl2? N?PCl2? N?PCl3 I , dichloroacetonitrile to give Cl2C?CCl? N?PCl2? N?PCl3 II , and chloroacetonitrile to give the ring compound III . Preparation, n.m.r. and mass spectra of the new compounds are described. The mechanism of formation is discussed. An improved procedure for the preparation of P2NCl7 is given.  相似文献   

19.
The thermal dehydrochlorination C2HCl5 → C2Cl4 + HCl has been studied in a static system between 565 and 645 K at pressures ranging from 5 to 21 torr. The course of the reaction was followed by measuring the pressure rise in the conditioned quartz reaction vessel and by analyzing the products by gas chromatography. The observed experimental results and data from the literature for flow systems can be explained quantitatively in terms of a radical reaction model involving heterogeneous chain initiation and termination steps. The rate constants have been deduced for reactions of Cl, Cl2, and C2HCl5 over reactor walls covered with a pyrolytic carbon film and for reactions of adsorbed Cl atoms. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 322–330, 2002  相似文献   

20.
Phosphate esters are important commercial products that have been used both as flame retardants and as plasticizers. To analyze these compounds by gas chromatographic mass spectrometry, it is important to understand the mass spectra of these compounds using various ionization modes. This paper is a systematic overview of the electron impact (EI), electron capture negative ionization (ECNI) and positive chemical ionization (PCI) mass spectra of 13 organophosphate esters. These data are useful for developing and optimizing analytical measurements. The EI spectra of these 13 compounds are dominated by ions such as H4PO4+, (M ? Cl)+, (M ? CH2Cl)+ or (M)+ depending on specific chemical structures. The ECNI spectra are generally dominated by (M ? R)?. The PCI spectra are mainly dominated by the protonated molecular ion (M + H)+. The branching of the alkyl substituents, the halogenation of the substituents and, for aromatic phosphate esters, ortho alkylation of the ring are all significant factors controlling the details of the fragmentation processes. EI provides the best sensitivity for the quantitative measurement of these compounds, but PCI and ECNI both have considerable qualitative selectivity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号