首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A novel compound, 4-{1′-hydroxy-1′-mercapto-1′-[1′′-2′′(N→O)-isoquinolyl]}yl-1-benzoic acid (1), together with six known compounds, 6-hydroxykaempferol-3-O-β-D-glucopyranoside (2), rutin (3), quercetin-3-O-β-D-glucopyranoside (4), kaempferol-3-O-β-D-glucopyranoside (5), cartormin (6), hydroxysafflor yellow A (7), were isolated by chromatography from the n-BuOH fraction of 50% ethanol extraction of Flos carthami. Their structures were elucidated on the basis of spectral analysis and comparison with published data. Among them, compound 1 was shown to possess a weak protective effect against cerebral ischemic damage in rats. Published in Khimiya Prirodnykh Soedinenii, No. 3, pp. 339–341, May–June, 2009.  相似文献   

2.
A new cerebrogalactoside, Juglans cerebroside A (1), together with five known compounds, quercetin-3-O-β-D-galactopyranoside (2), myricetin-3-O-β-D-galactopyranoside (3), 2″E-quercetin-3-O-β-D-(6″″-O-[3″(4′″-hydroxyphenyl) propylene acyl]) glucopyranoside (4), gallic acid (5), and 2-methyl-1-hexadecanol (6) were isolated from the leaves of Juglans mandshurica Maxim. The structures of these compounds were determined by 1D, 2D NMR, and MS techniques.  相似文献   

3.
Summary Antioxidant flavonoids from the plantsSolidago gigantea Ait.,Taraxacum officinale Wiggers and Webers (Asteraceae) andMorus nigra L. (Moraceae) have been analysed by capillary electrophoresis (CE).Solidago gigantea was investigated because of its diuretic, spasmolytic, antiphlogistic, and wound-healing effect,Taraxacum officinale because it has been shown to have good diuretic and choleretic activity, andMorus nigra because it is also widely regarded as a diuretic and antidiabetic agent. Aqueous and methanolic extracts of these plants have antioxidant properties. Because their flavonoid composition might be important in their free-radical-scavenging activity, a capillary electrophoretic method was developed for characterization of the flavonoids present. We identified quercetin-3-O-β-rutinoside (rutin), quercetin-3-O-β-d-glucoside (isoquercitrin), and chlorogenic acid as the most abundant compounds inSolidago gigantea andMorus nigra, and apigenin-7-O-β-glucoside, luteolin-7-O-β-glucoside, and chlorogenic acid inTaraxacum officinale. We also discovered that quercetin-3-O-α-rhamnoside (quercitrin) and quercetin-3-O-β-galactoside (hyperoside) were absent from our sample ofSolidago gigantea and quercitrin fromMorus nigra. Quantitative analysis of these extracts was performed by high-performance liquid chromatography (HPLC). Presented at Balaton Symposium '01 on High-Performance Separation Methods, Siófok, Hungary, September 2–4, 2001  相似文献   

4.
Five ellagic acid glycosides were isolated from Aphananthe aspera and their structures were identified as 3-O-methylellagic acid-4′-O-α-L-rhamnopyranoside (1), 3-O-methylellagic acid-4′-O-β-D-xylopyranoside (2), 3,3′-di-O-methylellagic acid-4′-O-β-D-xylopyranoside (3), 3,3′, 4-tri-O-methylellagic acid-4′-O-β-D-glucopyranoside (4), and 3,3′-di-O-methylellagic acid-4′-O-α-L-rhamnopyranoside (5) on the basis of spectroscopic analysis. Compound 1 is new, and all the compounds were isolated for the first time from the title plant. Published in Khimiya Prirodnykh Soedinenii, No. 5, pp. 458–459, September–October, 2007.  相似文献   

5.
Three new acyltyramines, N-[2-(4-hydroxyphenyl)ethyl]hentriacontanamide (1), N-[2-(4-hydroxyphenyl)ethyl]nonacosanamide (2) and N-[2-(4-hydroxyphenyl)ethyl]heneicosanamide (3) have been isolated from n-hexane extract of leaves of Anisodus luridus (Solanaceae). Successive extraction of defatted leaves of A. luridus with methanol afforded a residue on removal of solvent under reduced pressure. Residue was partitioned by means of chloroform and n-butanol. Chromatographic resolution of n-BuOH extract afforded six known compounds, apigenin (4), luteolin (5), quercetin (6), quercetin 3-O-α-l-rhamnoside (7), kaempferol 3-O-α-rhamnoside (8) and quercetin 3-O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside (9). The structures of the isolated compounds were assigned with the help of spectroscopic techniques. This is the first report of isolation of these compounds from this plant.  相似文献   

6.
The hepatoprotective and antioxidant activities of the hydroalcoholic extract (PE) of pea (Pisum sativum L.) by-product were evaluated, using CCl4-induced oxidative stress and hepatic damage in rats. These activities were assessed via measuring alanine aminotransferase (ALT), aspartate aminotransferase (AST), total protein and albumin, malondialdehyde (MDA), reduced glutathione (GSH), protein thiols (PSH), nitrite/nitrate levels, glutathione-peroxidase (GSH-Px), glutathione-S-transferase (GST) activities, as well as, histopathological evaluation. PE revealed significant hepatoprotective and antioxidant activities mostly found in n-butanol fraction. Chromatographic fractionation of this active fraction led to the isolation of five flavonoid glycosides namely, quercetin-3-O-sophorotrioside (1), quercetin-3-O-rutinoside (2), quercetin-3-O-(6″″-O-E sinapoyl)-sophorotrioside (3), quercetin-3-O-(6″″-O-E feruloyl)-sophorotrioside (4) and quercetin-3-O-β-D-glucopyranoside (5). The isolated compounds were quantified in PE, using a validated HPLC method and the nutritional composition of pea by-product was also investigated. Our results suggest that pea by-product contained biologically active constituents which can be utilised to obtain high value added products for nutraceutical use.  相似文献   

7.
Luteolin, quercetin, cinaroside, quercimeritrin, and the new flavonol bioside gigantoside A were isolated from Cephalaria gigantea (Ledeb.) Bobr. (Dipsacaceae) flowers. Spectral properties and chemical transformations established that gigantoside A had the structure quercetin-7-O-[α-L-arabinopyranosyl(1→6)]-β-D-glucopyranoside. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 6, pp. 552–554, November–December, 2006.  相似文献   

8.
Ellagic acid derivatives were isolated from Dipentodon sinicus and their structures were identified as 3,3′,4′-tri-O-methylellagic acid (1), 3,3′-di-O-methylellagic acid (2), 4,4′-di-O-methylellagic acid (3), 3,3′-di-O-methylellagic acid-4′-O-α-L-rhamnopyranoside (4), 3,3′,4′-tri-O-methylellagic acid-4′-O-β-D-glucopyranoside (5), 3,3′-di-O-methylellagic acid-4′-O-β-D-glucopyranoside (6), and ellagic acid (7). All the compounds were isolated for the first time from the title plant. Published in Khimiya Prirodnykh Soedinenii, No. 2, pp. 106–107, March–April, 2007.  相似文献   

9.
Two new phenolic compounds, 4-O-β-D-(6-O-gentisoylglucopyranosyl) vanillic acid (1), 2-O-β-D-(6-O-gentisoylglucopyranosyl) gentisic acid (2), together with three known compounds, vanillic acid (3), syringic acid (4), and gentisic acid (5), were isolated from the whole part of Stenoloma chusanum (L.) Ching. Structures of the two new compounds 1, 2 were elucidated on the basis of spectroscopic methods, including twodimensional NMR techniques and HR ESI-MS analysis. The compounds′ activities against Candida albicans, Cryptococcus neoformans, Trichophyton rubrum, Trichophyton mentagrophytes, Microsporum canis, Epidermophyton floccosum, and Aspergillus niger were determined, and the minimal inhibitory concentrations (MIC) were 25–100 μg/mL. Published in Khimiya Prirodnykh Soedinenii, No. 2, pp. 161–164, March–April, 2009.  相似文献   

10.
Mixtures of diblock co-oligomers of tri-O-methylated and unmodified cello-oligosaccharides have been found to be amphiphilic, as reported before. In order to clarify their accurate amphiphilic property, diblock co-oligomers of tri-O-methylated and unmodified cello-oligosaccharides with monodispersity, methyl β-d-glucopyranosyl-(1→4)-2,3,6–tri-O-methyl-β-d-glucopyranosyl-(1→4)-2,3,6–tri-O-methyl-β-d-glucopyranosyl-(1→4)-2,3,6-tri-O-methyl-β-d-glucopyranosyl-(1→4)-2,3,6-tri-O-methyl-d-glucopyranoside (1, pentamer), methyl β-d-glucopyranosyl-(1→4)- β-d-glucopyranosyl-(1→4)-2,3,6-tri-O-methyl-β-d-glucopyranosyl-(1→4)-2,3,6-tri-O-methyl-β-d-glucopyranosyl-(1→4)-2,3,6-tri-O-methyl-β-d-glucopyranosyl-(1→4)-2,3,6-tri-O-methyl-d-glucopyranoside (2, hexamer), and methyl β-d-glucopyranosyl-(1→4)-2,3,6-tri-O-methyl-β-d-glucopyranosyl-(1→4)- 2,3,6-tri-O-methyl-d-glucopyranoside (3, trimer) were synthesized independently. These compounds had higher surface activities compared to the mixture of diblock co-oligomers of tri-O-methylated and unmodified cello-oligosaccharides and commercially available methylcellulose (MC) SM-4. This paper describes the methods of synthesis of these compounds, and the influence of amphiphilic character on their surface activity. A new class of carbohydrate-based nonionic surfactant without long alkyl chain was discovered.  相似文献   

11.
A new oleane-type triterpene oligoglycoside, hederagenin 3-O-(3-O-acetyl-β-D-xylopyranosyl)-(1→3)-α-L-arabinopyranoside (2), together with four known compounds, hederagenin (1), hederagenin 3-O-(4-O-acetyl-α-L-arabinopyranosyl)-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranoside (3), hederagenin 3-O-α-L-arabinopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranoside (4), hederagenin 3-O-β-D-glucopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→4)-β-D-xylopyranoside (5), was isolated from the hull of Nephelium lappaceum. All the isolates were obtained from the hull of rambutan for the first time.  相似文献   

12.
A new stilbene glycoside, 5-methylresveratrol-3,4′-O-β-D-diglucopyranoside (1), was isolated from the n-butanol fraction of the rhizomes of Veratrum dahuricum, together with five known stilbenoids: resveratrol-3-O-β-D-glycoside (2), 4′-methylresveratrol-3-O-β-D-glycoside (3), oxyresveratrol-4′-O-β-D-glycoside (4), oxyresveratrol-3-O-β-D-glycoside (5), and oxyresveratrol-3,4′-O-β-D-diglycoside (6), and found for the first time in the investigated plant. The structures of six isolates were identified on the basis of 1D and 2D NMR data. Compounds 1–6 showed platelet aggregation inhibition, and compound 1 had an IC50 value of 383.6 μM against platelet aggregation induced by AA. Published in Khimiya Prirodnykh Soedinenii, No. 3, pp. 279–282, May–June, 2009.  相似文献   

13.
As a continuation of investigating Impatiens L. genus, eight flavonoids, eriodyctiol, eriodyctiol 7-O-β-?-glucoside, kaempferol 3-O-β-?-glucoside, kaempferol 3-O-β-?-galactoside, kaempferol 3-rhamnosyl-di-glucoside, kaempferol 3-O-β-?-rutinoside, quercetin 3-O-β-?-glucoside and quercetin 3-O-β-?-galactoside, two phenolic acids – p-hydroxybenzoic acid and protocatechuic acid, and 2-methoxynaphthalene-1,4-dione were isolated from the aerial parts of I. glandulifera collected in Poland. The structures of the compounds were established by analysis of their spectroscopic (1H and 13C NMR) and spectrometric (MS) data, as well as by comparison of these with those reported in the literature. Quercetin 3-O-β-?-glucoside, kaempferol 3-O-β-?-galactoside and kaempferol 3-O-β-?-rutinoside were isolated for the first time from the investigated taxon. In addition, the antioxidant activities in different tests of all obtained compounds were evaluated. The results clearly showed that among analyzed constituents, quercetin 3-O-β-?-glucoside exhibited antioxidant activity comparable or better than ascorbic acid and Trolox which were used as a positive control.  相似文献   

14.
A new flavone glycoside, luteolin 7-O-[(6″′-caffeoyl)-β-D-glucopyranosyl-(1 → 6)]-β-D-glucopyranoside (1), was isolated from Codonopsis nervosa, along with three other known compounds, luteolin 7-O-β-D-glucopyranoside (2), luteolin 7-O-gentiobioside (3), and tangshenoside VI (4). Their structures were determined on the basis of 1D and 2D NMR, IR, and HR-ESI-MS.  相似文献   

15.
Naringenin 5-O-glucoside, apigenin 7-O-glucoside, luteolin 7-O-glucoside, kaempferol 3-O-glucoside, quercetin 3-O-glucoside, apigenin, luteolin, kaempferol, and quercetin, nine flavonoid derivatives, were isolated for the first time from the aqueous methanolic extract of the aerial parts of Chrysanthemum coronarium. Their structures were elucidated on the basis of chemical and spectroscopic (UV, 1H, 13C NMR) analyses. 1-and 2-dimensional NMR spectroscopy of the rare naringenin 5-O-glucoside have been recorded and assigned for the first time. The flavonoid glucosides from Chrysanthemum coronarium showed week activity against Poliovirus I and Adenovirus type 7. Published in Khimiya Prirodnykh Soedinenii, No. 6, pp. 546–548, November–December, 2007.  相似文献   

16.
The new flavone glucoside viscioside, luteolin-4′-O-β-D-galactopyranoside, in addition to the known flavonoids apigenin, luteolin, quercetin, cinaroside, luteolin-4′-O-β-D-glucoside, and isoquercitrin were isolated from the aerial part of Vicia subvillosa. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 1, pp. 30–31, January–February, 2007.  相似文献   

17.
Two new quercetin glycoside derivatives named quercetin-3-O-[2-O-trans-caffeoyl-α-l-rhamnopyranosyl-(1 → 6)-β-d-glucopyranoside] (1) and quercetin-3-O-[2-O-trans-caffeoyl-β-l-rhamnopyranosyl-(1 → 6)-β-d-glucopyranoside] (2) along with three known flavonoids, 5-hydroxy-6,7,3′,4′,5′-pentamethoxyflavone (3), 5,7-dihydroxy-8-methoxyflavone (4) and kaempferol 3-O-β-d-glucopyranoside (5), were isolated from the fruits of Gardenia jasminoides var. radicans. The structures of the new compounds were determined by means of extensive spectroscopic analysis (1D, 2D NMR and HR-ESI-MS), glycoside hydrolysis and sugar HPLC analysis after derivatisation. This is the first report on the isolation of a pair of compounds with α or β-l-rhamnopyranosyl configuration from plant and the first detail assignment of their NMR data.  相似文献   

18.
A novel dimeric flavonol glycoside, Cynanflavoside A (1), together with six analogues, kaempferol-3-O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside (2), quercetin-3-O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside (3), kaempferol-3-O-α-L-rhamnopyranosyl-(1→2)-β-D-xylopyranoside (4), quercetin-3-O-α-L-rhamnopyranosyl-(1→2)-β-D-xylopyranoside (5), kaempferol-3-O-β-D-glucopyranosyl-7-O-α-L-rhamnopyranoside (6), and quercetin-3-O-galactoside (7) were isolated from the n-butyl alcohol extract of Cynanchum acutum subsp. sibiricum. Their structures were determined spectroscopically and compared with previously reported spectral data. All compounds were evaluated for their anti-complementary activity in vitro, and only compound 5 exhibited anti-complement effects with CH50 value of 0.33 mM.  相似文献   

19.
The structures of five furostanol glycosides (1–5), of which the 26-O-β-D-glucopyranosyl-(25S),5α-furost20(22)-en-12-one-2α,3β,26-triol-3-O-β-D-glucopyranosyl-(1→4)-β-D-galactopyranoside (1) was new, from the leaves of Tribulus terrestris L. were established using chemical and NMR spectroscopic methods.  相似文献   

20.
A new acylated flavonol glycoside (1) and a known compound (2) have been isolated from the whole plant of Sedum aizoon L. Their structures have been established as quercetin 3-O-[β-D-(2‴-O-(E)-feruloyl)-xylopyranosyl]-(1 → 6)-β-D-glucopyranoside (1) and rutin (2) by means of spectroscopic analysis and chemical methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号