首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1,2-bis(p-aminophenoxy)ethane was obtained with reduction of 1,2-bis(p-nitrophenoxy)ethane and Pd/C as catalyst in hydrazine hydrate. Co(II), Cu(II), and Ni(II) complexes of aromatic bidentate diamine were prepared. The structure of the ligand and its complexes were characterized by IR, elemental analysis, magnetic susceptibility, conductivimetry, UV-Vis and 1H NMR spectroscopy. The metal/ligand mole ratios were found to be 1:1. The general compositions of these complexes are found to be [CoLCl2], [CuLCl2], and [CoLCl2]. The text was submitted by the authors in English.  相似文献   

2.
The Schiff base ligand, pyrral-l-histidinate(L) and its Co(II), Ni(II), Cu(II) and Zn(II) complexes were synthesized and characterized by elemental analysis, mass, molar conductance, IR, electronic, magnetic measurements, EPR, redox properties, thermal studies, XRD and SEM. Conductance measurements indicate that the above complexes are 1:1 electrolytes. IR data show that the ligand is tridentate and the binding sites are azomethine nitrogen, imidazole nitrogen and carboxylato oxygen atoms. Electronic spectral and magnetic measurements indicate tetrahedral geometry for Co(II) and octahedral geometry for Ni(II) and Cu(II) complexes, respectively. The observed anisotropic g values indicate the presence of Cu(II) in a tetragonally distorted octahedral environment. The redox properties of the ligand and its complexes have been investigated by cyclic voltammetry. Thermal decomposition profiles are consistent with the proposed formulations. The powder XRD and SEM studies show that all the complexes are nanocrystalline. The in vitro biological screening effects of the synthesized compounds were tested against the bacterial species, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa and Staphylococcus aureus; fungal species, Aspergillus niger, Aspergillus flavus and Candida albicans by the disc diffusion method. The results indicate that complexes exhibit more activity than the ligand. The nuclease activity of the ligand and its complexes were assayed on CT DNA using gel electrophoresis in the presence and absence of H2O2.  相似文献   

3.
Binuclear cobalt(II), nickel(II), copper(II) and zinc(II) complexes of general composition [M2L1-2(μ-Cl)Cl2] · nH2O with the Schiff-base ligands (where L1H and L2H are the potential pentadentate ligands derived by condensing 2,6-diformyl-4-methylphenol with 4-amino-3-antipyrine and 2-hydroxy-3-hydrazinoquinoxiline, respectively) have been synthesized and characterized. Analytical and spectral studies support the above formulation. 1H-NMR and IR spectra of the complexes suggest they have an endogenous phenoxide bridge, with chloride as the exogenous bridge atom. The electronic spectra of all the complexes are well characterized by broad d–d and a high intensity charge-transfer transitions. The complexes are chloro-bridged as evidenced by two intense far-IR bands centered around 270–280 cm−1. Magnetic susceptibility measurements show that complexes are antiferromagnetic in nature. The compounds show significant growth inhibitory activity against fungi Aspergillus niger and Candida albicans and moderate activity against bacteria Bacillus cirroflagellosus and Pseudomonas auresenosa.  相似文献   

4.
Complexes of Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with 3-(2-pyridyl)-1-(2-hydroxy phenyl)-2-propen-1-one (PHPO), 3-(1-naphthyl)-1-(2-hydroxy phenyl)-2-propen-1-one (NHPO) and 3-(3,4-dimethoxy phenyl)-1-(2-hydroxy phenyl)-2-propen-1-one (DMPHPO) have been synthesized and characterized by analytical, conductivity, thermal, magnetic, infrared, electronic and electron spin resonance data. Based on analytical data the stoichiometry of the complexes has been found to be 1 : 2. The conductivity data show that all these complexes are non-electrolytes. The infrared spectral data indicate that the ligand PHPO acts as uninegative tridentately towards Co(II) and Ni(II) and bidentately with Cu(II), Zn(II) and Cd(II). Ligands like NHPO and DMPHPO act as uninegative bidentately with all the metal ions. The electronic spectral data suggest that all the Co(II) complexes and Ni(II) of PHPO complex are octahedral and all the Cu(II) and Ni(II) of NHPO and DMPHPO complex are square-planar. The complex of Zn(II) and Cd(II) are tetrahedral. ESR parameters of Cu(II) complexes have been calculated and relevant conclusions have been drawn with respect to the nature of bonds present in them.  相似文献   

5.
N,N-diethylnicotinamide-acetylsalicylato complexes of Co(II), Ni(II), Cu(II), and Zn(II) were synthesized and investigated by elemental analysis, magnetic susceptibility, solid state UV–Vis, direct injection probe mass spectra, FTIR spectra and thermoanalytic TG-DTG methods. The complexes contain two waters, two acetylsalicylate (asa) and two N,N-diethylnicotinamide (dena) ligands per formula unit. The acetylsalicylate and N,N-diethylnicotinamide are monodentate through acidic oxygen and nitrogen of pyridine ring. Decomposition of each complex starts with dehydration then decomposition of N,N-diethylnicotinamide and acetylsalicylate, respectively. The thermal dehydration of the complexes takes place in one or two steps. The decomposition mechanism and thermal stability of the investigated complexes are interpreted in terms of their structures. The final decomposition products are found to be metal oxides.  相似文献   

6.
The cobalt, nickel, copper and zinc atoms in bis(1,10-phenanthroline)bis(salicylato-O)metal(II) monomeric octahedral complexes [M(Hsal)2(phen)2nH2O, (M: Co(II), n=1; Cu(II), n=1.5 and Ni(II), Zn(II), n=2) are coordinated by the salicylato monoanion (Hsal) through the carboxyl oxygen in a monodentate fashion and by the 1,10-phenanthroline (phen) molecule through the two amine nitrogen atoms in a bidentate chelating manner. On the basis of the DTGmax, the thermal stability of the hydrated complexes follows order: Ni(II) (149°C)>Co(II) (134°C)>Zn(II) (132°C)>Cu(II) (68°C) in static air atmosphere. In the second stage, the pyrolysis of the anhydrous complexes takes place. The third stage of decomposition is associated with a strong exothermic oxidation process (DTA curves: 410, 453, 500 and 450°C for the Co(II), Ni(II), Cu(II) and Zn(II) complexes, respectively). The final decomposition products, namely CoO, NiO, CuO and ZnO, were identified by IR spectroscopy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Mixed-ligand m-hydroxybenzoate complexes of Co(II), Ni(II), Cu(II), and Zn(II) with nicotinamide were synthesized and characterized by elemental analysis, FT-IR spectrometry, solid state UV-vis spectrometry, and magnetic susceptibility measurements. The thermal behavior of the complexes was studied by simultaneous TG-DTA methods in static air atmosphere. The infrared spectral characteristics of the complexes are discussed and the mass spectra data are recorded. The complexes contain two water molecules, two m-hydroxybenzoato (m-hba), and two nicotinamide (na) ligands per formula unit. In these complexes, the m-hydroxybenzoate and nicotinamide behave as a monodentate ligand through acidic oxygen and nitrogen of the pyridine ring. The decomposition pathways and the stability of the complexes are interpreted in terms of the structural data. The final decomposition products were found to be the respective metal oxides. The text was submitted by the author in English.  相似文献   

8.
Four novel mixed ligand complexes of Cu(II), Co(II), Ni(II) and Zn(II) with saccharin and nicotinamide were synthesised and characterised on the basis of elemental analysis, FT-IR spectroscopic study, UV–Vis spectrometric and magnetic susceptibility data. The structure of the Cu (II) complex is completely different from those of the Co(II), Ni(II) and Zn(II) complexes. From the frequencies of the saccharinato CO and SO2 modes, it has been proven that the saccharinato ligands in the structure of the Cu complex are coordinated to the metal ion ([Cu(NA)2(Sac)2(H2O)], where NA — nicotinamide, Sac — saccharinato ligand or ion), whilst in the Co(II), Ni(II) and Zn(II) complexes are uncoordinated and exist as ions ([M(NA)2(H2O)4](Sac)2).  相似文献   

9.
A new Schiff base, {1-[(2-hydroxy-naphthalen-1-ylmethylene)-amino]-4-phenyl-2-thioxo-1, 2-dihydro-pyrimidin-5-yl}-phenyl-methanone, has been synthesized from N-amino pyrimidine-2-thione and 2-hydroxynaphthaldehyde. Metal complexes of the Schiff base were prepared from acetate/chloride salts of Cu(II), Co(II), Ni(II), Zn(II), and Cd(II) in methanol. The chemical structures of the Schiff-base ligand and its metal complexes were confirmed by elemental analyses, IR, 13C-NMR, 1H-NMR, API-ES, UV-Visible spectroscopy, magnetic susceptibility, and thermogravimetric analyses. The electronic spectral data and magnetic moment measurements suggest mononuclear octahedral and mononuclear or binuclear square planar structures for the metal complexes. In light of these results, it was suggested that this ligand coordinates to each metal atom by hydroxyl oxygen, azomethine nitrogen, and thione sulfur to form octahedral complexes with Cd(II) and Zn(II).  相似文献   

10.
《Polyhedron》1988,7(5):337-343
The new Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes with tridentate Schiff base, the product of condensation of o-aminobenzyl alcohol with salicylaldehyde have been synthesized and characterized by elemental analysis, IR, electronic, EPR and Mössbauer spectra, thermal analysis, magnetic susceptibility and molecular weight measurements. Dimeric or polymeric structures for the investigated complexes were proposed. The interaction of the cobalt complex with dioxygen is also described.  相似文献   

11.
A series of metal complexes of Co(II), Ni(II) and Cu(II) have been synthesized with the Schiff base derived from thiocarbohydrazide and 8-formyl-7-hydroxy-4-methylcoumarin. The structures of the complexes have been proposed by elemental analyses, molar conductance, spectral (IR, UV-Vis, ESR and FAB-mass), magnetic, thermal and electrochemical studies. These complexes are soluble in DMF and DMSO and molar conductance values indicate that they are non-electrolytes. Elemental analyses of the complexes confirm stoichiometry ML ·; 2H2O [M=Co(II), Ni(II) and Cu(II)]. Spectroscopic studies indicate coordination occurs through phenolic oxygen after deprotonation and nitrogen of azomethine. The Schiff base and its complexes have also been screened for antibacterial (Escherichia coli, Streptococcus aureus, Streptococcus pyogenes and Pseudomonas aeruginosa) and antifungal activities (Aspergillus niger, Aspergillus flavus and cladosporium) by the MIC method. The brine shrimp bioassay was also carried out to study their in vitro cytotoxic properties.  相似文献   

12.
Complexes of the type [M(L)X(2)], where M = Co(II), Ni(II) and Cu(II), have been synthesized with novel NO-donor Schiff's base ligand, 1,4-diformylpiperazine bis(4-imino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one) which is obtained by the acid catalyzed condensation of 1,4-diformylpiperazine with 4-aminoantipyrine. The elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, UV, NMR, mass and EPR studies of the compounds led to the conclusion that the ligand acts as tetradentate chelate. The Schiff's base ligand forms hexacoordinated complexes having octahedral geometry for Ni(II) and tetragonal geometry for Co(II) and Cu(II) complexes. The mycological studies of the compounds were examined against the several opportunistic pathogens, i.e., Alternaria brassicae, Aspergillus niger and Fusarium oxysporum. The Cu(II) complexes were found to have most fungicidal behavior.  相似文献   

13.
A series of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes of azo-compounds containing hydroxyl quinoline moiety have been synthesized and characterized by elemental analysis, molar conductance, magnetic moments, IR, electronic and ESR spectral studies. The results revealed the formation of 1:1 and 1:2 (L:M) complexes. The molar conductance data reveal that the chelates are nonelectrolyte. IR spectra indicate that the azodyes behave as monobasic bidentate or dibasic tetradentate ligands through phenolate or carboxy oxygen, azo N for 1:1 (L:M) complexes beside phenolate oxygen and quinoline N atoms for 1:2 (L:M) complexes. The thermal analyses (TG and DTA) as well as the solid electrical conductivity measurements are also studied. The molecular parameters of the ligands and their metal complexes have been calculated.  相似文献   

14.
A series of metal complexes of cobalt(II), nickel(II), copper(II), and zinc(II) have been synthesized with newly-derived biologically active ligands. These ligands were synthesized by condensation of 3-substituted-4-amino-5-hydrazino-1,2,4-triazole and orthophthalaldehyde. The probable structure of the complexes has been proposed on the basis of elemental analyses and spectral (IR, 1H-NMR, UV-vis, magnetic, ESR, FAB-mass and thermal studies) data. Electrochemical study of the complexes is also made. All complexes are nonelectrolytes in N,N-dimethyl formamide and DMSO. The Schiff bases and their Co(II), Ni(II), Cu(II), and Zn(II) complexes have been screened for antibacterial (Escherichia coli, Staphylococcus aureus, Streptococcus pyogenes, and Pseudomonas aeruginosa) and antifungal (Aspergillus niger, Aspergillus flavus, and cladosporium) activities by minimum inhibitory concentration method. DNA cleavage is also carried out.  相似文献   

15.
New Schiff bases have been synthesized from benzofuran-2-carbohydrazide and benzaldehyde, [BPMC] or 3,4-dimethoxybenzaldehyde, [BDMeOPMC]; complexes of the type MLX2, where M = Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II), L = BPMC or BDMeOPMC and X = Cl, have been prepared. Structures have been elucidated on the basis of elemental analysis, conductance measurements, magnetic properties, spectral studies i.e., 1H NMR, electronic, ESR and IR studies show that the Schiff bases are bidentate through the azomethine nitrogen and oxygen of the carbonyl. We propose tentative structures for all of these complexes. The antifungal and antibacterial activities of the ligands and their metal complexes have been screened against fungi Aspergillus niger and Aspergillus fumigatus and against bacteria Escherichia coli and S. aurious.  相似文献   

16.
Complexes of cobalt(II), nickel(II), copper(II) and zinc(II) with a new tetraaza macrocyclic ligand have been synthesized and characterized by microanalyses, molar conductance, magnetic susceptibility, mass, thermogravimetric (TGA), IR, 1H and 13C NMR, electronic and ESR spectral studies. All the complexes are found to have the formula [MLX2]x nH2O and are six-coordinated with distorted octahedral geometry.  相似文献   

17.
The electronic communication between two redox centres through a Schiff base complex has been investigated in a series of ethylenediimine-bis(1-ferrocenyl-1,3-butanedionate) complexes of Zn(II) 1, Cu(II) 2, Ni(II) 3 and Co(II) 4. Cyclic voltammetry experiments of 1 and 2 exhibit a unique two-electron reversible oxidation wave, whereas in the case of 3 and 4 two and three one-electron oxidation processes are, respectively, observed. These results suggest some electronic interaction between the iron atoms of the ferrocenyl groups. DFT calculations carried out on model complexes show that for all the studied compounds the removal of the first two electrons corresponds to the oxidation processes of the iron centres in the weakly coupled ferrocenyl termini. The electronic communication between the two iron centres increases on going from 1 to 4. Finally, a re-indexation of the bands observed in the UV-Visible spectra has been carried out using TDDFT calculations.  相似文献   

18.
In this study, the novel vic-dioxime ligand (3) and its Ni(II), Cu(II), Co(II), Cd(II) and Zn(II) complexes (48) were synthesized for the first time by condensation reactions of N-(4-aminophenyl)aza-15-crown-5 (1) and anti-chlorophenylchloroglyoxime (2). All of these new compounds were characterized by the elemental analysis, Fourier transform infrared, ultraviolet–visible, mass spectrometry, 1H NMR, 13C NMR and magnetic susceptibility measurements. The electrochemical properties of the ligand and its complexes have been investigated by cyclic voltammetry at the glassy carbon electrode in 0.1 M TBATFB in DMSO.  相似文献   

19.
A bidentate/tridentate 5-bromosalycilaldehyde isonicotinoylhydrazone Schiff base was synthesized by condensing 5-bromosalycilaldehyde with isonicotinoylhydrazine. Cu(II), Co(II), Ni(II), Mn(II) and Zn(II) complexes of this chelating ligand were synthesized using nitrates of these metals. The ligand and the complexes were characterized by elemental analysis, UV–Vis, IR and EPR spectroscopy, conductance and magnetic susceptibility measurements, fluorescence, cyclic voltammetry and thermogravimetric analysis. The ligand and Zn(II) complex exhibits solid-state photoluminescence at room temperature.  相似文献   

20.
Complexes of the type [M(pash)Cl] and [M(Hpash)(H2O)SO4] (M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); Hpash = p-amino acetophenone salicyloyl hydrazone) have been synthesized and characterized by elemental analyses, molar electrical conductance, magnetic moments, electronic, ESR and IR spectra, thermal studies and X-ray powder diffraction. All the complexes are insoluble in common organic solvents and are non-electrolytes. The magnetic moment values and electronic spectra indicate a square-planar geometry for Co(II), Ni(II) and Cu(II) chloride complexes and spin-free octahedral geometry for the sulfato complexes. The ligand coordinates through >C=N–,–NH2 and a deprotonated enolate group in all the chloro complexes, and through >C=N–, >C=O and–NH2 in the sulfato complexes. Thermal analyses (TGA and DTA) of [Cu(pash)Cl] show a multi-step exothermic decomposition pattern. ESR spectral parameters of Cu(II) complexes in solid state at room temperature suggest the presence of the unpaired electron in d x 2 ? y 2 . X-ray powder diffraction parameters for [Cu(pash)Cl] and [Ni(Hpash)(H2O)SO4] correspond to tetragonal and orthorhombic crystal lattices, respectively. The complexes show a fair degree of antifungal activity against Aspergillus sp., Stemphylium sp. and Trichoderma sp. and moderate antibacterial activity against E. coli and Clostridium sp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号