首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Chiral structures created through the adsorption of molecules onto achiral surfaces play pivotal roles in many fields of science and engineering. Here, we present a systematic study of a novel chiral phenomenon on a surface in terms of organizational chirality, that is, meso‐isomerism, through coverage‐driven hierarchical polymorphic transitions of supramolecular assemblies of highly symmetric π‐conjugated molecules. Four coverage‐dependent phases of dehydrobenzo[12]annulene were uniformly fabricated on Ag(111), exhibiting unique chiral characteristics from the single‐molecule level to two‐dimensional supramolecular assemblies. All coverage‐driven phase transitions stem from adsorption‐induced pseudo‐diastereomerism, and our observation of a lemniscate‐type (∞) supramolecular configuration clearly reveals a drastic chiral phase transition from an enantiomeric chiral domain to a meso‐isomeric achiral domain. These findings provide new insights into controlling two‐dimensional chiral architectures on surfaces.  相似文献   

7.
Recently, smart surfaces with switchable wettability have aroused much attention. However, only single surface chemistry or the microstructure can be changed on these surfaces, which significantly limits their wetting performances, controllability, and applications. A new surface with both tunable surface microstructure and chemistry was prepared by grafting poly(N‐isopropylacrylamide) onto the pillar‐structured shape memory polymer on which multiple wetting states from superhydrophilicity to superhydrophobicity can be reversibly and precisely controlled by synergistically regulating the surface microstructure and chemistry. Meanwhile, based on the excellent controllability, we also showed the application of the surface as a rewritable platform, and various gradient wettings can be obtained. This work presents for the first time a surface with controllability in both surface chemistry and microstructure, which starts some new ideas for the design of novel superwetting materials.  相似文献   

8.
9.
Using sensors to quantify clinically relevant biological species has emerged as a fascinating research field due to their potential to revolutionize clinical diagnosis and therapeutic monitoring. Taking advantage of the wide utility in clinical analysis and low cost of potentiometric ion sensors, we demonstrate a method to use such ion sensors to quantify bioanalytes without chemical labels. This is achieved by combination of chronopotentiometry with a mussel‐inspired surface imprinting technique. The biomimetic sensing method is based on a blocking mechanism by which the recognition reaction between the surface imprinted polymer and a bioanalyte can block the current‐induced ion transfer of an indicator ion, thus causing a potential change. The present method offers high sensitivity and excellent selectivity for detection of biological analytes. As models, trypsin and yeast cells can be measured at levels down to 0.03 U mL−1 and 50 CFU mL−1, respectively.  相似文献   

10.
11.
The on‐surface activation of carbon–halogen groups is an efficient route to produce radicals for constructing various hydrocarbons and carbon nanostructures. To date, the employed halide precursors have only one halogen attached to a carbon atom. It is thus of interest to study the effect of attaching more than one halogen atom to a carbon atom with the aim of producing multiple unpaired electrons. By introducing an alkenyl gem‐dibromide, cumulene products were fabricated on a Au(111) surface by dehalogenative homocoupling reactions. The reaction products and pathways were unambiguously characterized by a combination of high‐resolution scanning tunneling microscopy and non‐contact atomic force microscopy measurements together with density functional calculations. This study further supplements the database of on‐surface synthesis strategies and provides a facile manner for incorporation of more complicated carbon scaffolds into surface nanostructures.  相似文献   

12.
13.
Composition engineering of halide perovskite allows the tunability of the band gap over a wide range so that photons can be effectively harvested, an aspect that is of critical importance for increasing the efficiency of photocatalysis under sunlight. However, the poor stability and the low photocatalytic activity of halide perovskites prevent use of these defect‐tolerant materials in wide applications involving photocatalysis. Here, an alcohol‐based photocatalytic system for dye degradation demonstrated high stability through the use of double perovskite of Cs2AgBiBr6. The reaction rate on Cs2AgBiBr6 is comparable to that on CdS, a model inorganic semiconductor photocatalyst. The fact of fast reaction between free radicals and dye molecules indicates the unique catalytic properties of the Cs2AgBiBr6 surface. Deposition of metal clusters onto Cs2AgBiBr6 effectively enhances the photocatalytic activity. Although the stability (five consecutive photocatalytic cycles without obvious decrease of efficiency) requires further improvements, the results indicate the significant potential of Cs2AgBiBr6‐based photocatalysis.  相似文献   

14.
15.
16.
17.
18.
19.
Surface frustrated Lewis pairs (SFLPs) have been implicated in the gas‐phase heterogeneous (photo)catalytic hydrogenation of CO2 to CO and CH3OH by In2O3?x(OH)y. A key step in the reaction pathway is envisioned to be the heterolysis of H2 on a proximal Lewis acid–Lewis base pair, the SFLP, the chemistry of which is described as In???In‐OH + H2 → In‐OH2+???In‐H?. The product of the heterolysis, thought to be a protonated hydroxide Lewis base In‐OH2+ and a hydride coordinated Lewis acid In‐H?, can react with CO2 to form either CO or CH3OH. While the experimental and theoretical evidence is compelling for heterolysis of H2 on the SFLP, all conclusions derive from indirect proof, and direct observation remains lacking. Unexpectedly, we have discovered rhombohedral In2O3?x(OH)y can enable dissociation of H2 at room temperature, which allows its direct observation by several analytical techniques. The collected analytical results lean towards the heterolysis rather than the homolysis reaction pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号