首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The condensation pressure drop characteristics for pure refrigerants R22, R134a, and a binary refrigerant mixture R410A without lubricating oil in a single circular microtube were investigated experimentally. The test section consists of 1,220?mm length with horizontal copper tube of 3.38?mm outer diameter and 1.77?mm inner diameter. The experiments were conducted at refrigerant mass flux of 450–1,050?kg/m2s, and saturation temperature of 40°C. The main experimental results showed that the condensation pressure drop of R134a is higher than that of R22 and R410A for the same mass flux. The experimental data were compared against 14 two-phase pressure drop correlations. A new pressure drop model that is based on a superposition model for refrigerants condensing in the single circular tube is presented.  相似文献   

2.
Experimental condensation heat transfer data for the new refrigerant R1234ze(E), trans-1,3,3,3-tetrafluoropropene, are presented and compared with refrigerants R134a and R236fa for a vertically aligned, aluminum multi-port tube. Local condensation heat transfer measurements with such a multi-microchannel test section are very challenging due to the large uncertainties related to the heat flux estimation. Presently, a new experimental test facility was designed with a test section to directly measure the wall temperature along a vertically aligned aluminum multi-port tube with rectangular channels of 1.45 mm hydraulic diameter. Then, a new data reduction process was developed to compute the local condensation heat transfer coefficients accounting for the non-uniform distribution of the local heat flux along the channels. The condensation heat transfer coefficients showed the expected decrease as the vapor quality decreased (1.0-0.0) during the condensation process, as the mass velocity decreased (260-50 kg m−2 s−1) and as the saturation temperature increased (25-70 °C). However, the heat transfer coefficients were not affected by the condensing heat flux (1-62 kW m−2) or by the entrance conditions within the tested range. It was found that the heat transfer performance of R1234ze(E) was about 15-25% lower than for R134a but relatively similar to R236fa. The experimental data were then compared with leading prediction methods from the literature for horizontal channels. In general, the agreement was poor, over-predicting the high Nusselt number data and under-predicting the low Nusselt number data, but capturing the mid-range quite well. A modified correlation was developed and yielded a good agreement with the current database for all three fluids over a wide range of operating conditions.  相似文献   

3.
Condensation heat transfer of R134a in a vertical plate heat exchanger was investigated experimentally. The local heat transfer coefficients are determined by means of the measured local wall temperatures. A differential energy balance model is developed for data evaluation. It is found that the correlation proposed by Shah using Ψ and Z factors is suitable for condensation in plate heat exchangers and is adopted to fit the measured data.  相似文献   

4.
Oil-water flow regimes were studied in 2.1 mm and 3.7 mm borosilicate glass tubes; both tubes exhibit Eötvös numbers less than one and therefore surface tension forces may be more important in these mini-channels compared to larger diameter tubes. A closed-loop, adiabatic experimental apparatus was constructed and validated using water. This study focused on tap water and two mineral oils (i.e., Parol 70 and 100) with a density of 840 kg/m3 but a factor of two difference in viscosity. Experiments included a wide range of oil superficial velocities (e.g., 0.84–6.84 m/s for D = 2.1 mm and 0.27–3.30 m/s for D = 3.7 mm) and water superficial velocities (e.g., 0.21–7.69 m/s for D = 2.1 mm and 0.07–4.96 m/s for D = 3.7 mm). Stratified, annular, intermittent, and dispersed flow regimes were observed in both tubes, although the annular flow regime was more prevalent in the smaller tube. Pressure drops increased with decreasing tube diameter and were flow regime dependent. Flow maps were created for these mini-channels and equations adapted from Brauner and Maron (1999) were used to predict the flow regime transitions. The effects of viscosity were modest, although increased oil viscosity enhanced stability of oil-water flows.  相似文献   

5.
This paper presents the heat transfer coefficients and the pressure drop measured during HFC-410A condensation inside a commercial brazed plate heat exchanger: the effects of saturation temperature, refrigerant mass flux and vapour super-heating are investigated. The heat transfer coefficients show weak sensitivity to saturation temperature and great sensitivity to refrigerant mass flux and vapour super-heating. At low refrigerant mass flux (<20 kg/m2 s) the saturated vapour condensation heat transfer coefficients are not dependent on mass flux and are well predicted by Nusselt [W. Nusselt, Die oberflachenkondensation des wasserdampfes, Energy 60 (1916) 541–546, 569–575] analysis for vertical surface: the condensation process is gravity controlled. For higher refrigerant mass flux (>20 kg/m2s) the saturated vapour condensation heat transfer coefficients depend on mass flux and are well predicted by Akers et al. [W.W. Akers, H.A. Deans, O.K. Crosser, Condensing heat transfer within horizontal tubes, Chem. Eng. Prog. Symp. Series 55 (1959) 171–176] equation: forced convection condensation occurs. In the forced convection condensation region the heat transfer coefficients show a 30% increase for a doubling of the refrigerant mass flux. The condensation heat transfer coefficients of super-heated vapour are 8–10% higher than those of saturated vapour and are well predicted by Webb [R.L. Webb, Convective condensation of superheated vapor, ASME J. Heat Transfer 120 (1998) 418–421] model. A simple linear equation based on the kinetic energy per unit volume of the refrigerant flow is proposed for the computation of the frictional pressure drop.  相似文献   

6.
In the present experimental study, the pressure drop of the two-phase dry-plug flow (dry wall condition at the gas portions) in round mini-channels was investigated. The air–water mixtures were flowed through the round mini-channels made of polyurethane and Teflon, respectively, with their inner diameters ranging from 1.62 to 2.16 mm. In the dry-plug flow regime, the pressure drop measured became larger either by increasing the liquid superficial velocity or by decreasing the gas superficial velocity due to the increase of the number of the moving contact lines in the test section. In such a case, the role of the moving contact lines turned out to be significant. Therefore, a pressure drop model of dry-plug flow was proposed through modification of the dynamic contact angle analysis taking account of the energy dissipation by the moving contact lines, which represents the experimental data within the mean deviation of 4%.  相似文献   

7.
The theoretical flow models of homogeneous and separated flow are applied to in-tube condensation to predict the pressure drop characteristics of R134a. The homogeneous flow model is modified by ten different dynamic viscosity correlations and various alternative correlations of total, frictional and momentum pressure drops to take account of the partial condensation inside the tube. Numerical analyses were performed to determine the average and local homogeneous wall shear stresses and friction factors by means of a CFD program. The equivalent Reynolds number model is modified by six different two-phase friction factors to determine the total condensation pressure drop in the separated flow model. The refrigerant side total pressure drops, frictional pressure drops, friction factors and wall shear stresses are determined within a ±30% error band. The importance of using the alternative total, momentum and frictional pressure drop correlations for the homogeneous flow model is also shown.  相似文献   

8.
In the present study, new experimental data are presented for literature on the prediction of film thickness and identification of flow regime during the co-current downward condensation in a vertical smooth copper tube having an inner diameter of 8.1 mm and a length of 500 mm. R134a and water are used as working fluids in the tube side and annular side of a double tube heat exchanger, respectively. Condensation experiments are done at mass fluxes of 300 and 515 kg m?2 s?1. The condensing temperatures are between 40 and 50 °C; heat fluxes are between 12.65 and 66.61 kW m?2. The average experimental heat transfer coefficient of the refrigerant HFC-134a is calculated by applying an energy balance based on the energy transferred from the test section. A mathematical model by Barnea et al. based on the momentum balance of liquid and vapor phases is used to determine the condensation film thickness of R134a. The comparative film thickness values are determined indirectly using relevant measured data together with various void fraction models and correlations reported in the open literature. The effects of heat flux, mass flux, and condensation temperature on the film thickness and condensation heat transfer coefficient are also discussed for the laminar and turbulent flow conditions. There is a good agreement between the film thickness results obtained from the theoretical model and those obtained from six of 35 void fraction models in the high mass flux region of R134a. In spite of their different valid conditions, six well-known flow regime maps from the literature are found to be predictive for the annular flow conditions in the test tube in spite of their different operating conditions.  相似文献   

9.
A state of the art review of two-phase void fraction models in smooth horizontal tubes is provided and a probabilistic two-phase flow regime map void fraction model is developed for refrigerants under condensation, adiabatic, and evaporation conditions in smooth, horizontal tubes. Time fraction information from a generalized probabilistic two-phase flow map is used to provide a physically based weighting of void fraction models for different flow regimes. The present model and void fraction models in the literature are compared to data from multiple sources including R11, R12, R134a, R22, R410A refrigerants, 4.26–9.58 mm diameter tubes, mass fluxes from 70 to 900 kg/m2 s, and a full quality range. The present model has a mean absolute deviation of 3.5% when compared to the collected database.  相似文献   

10.
The two-phase flow in the corrugated gap created by two adjacent plates of a plate heat exchanger was investigated experimentally. One setup consisting of a transparent corrugated gap was used to visualize the two-phase flow pattern and study the local phenomena of phase distribution, pressure drop and void fraction. Saturated two-phase R365mfc and an air-water mixture were used as working fluids.In a second experimental setup, the heat transfer coefficients and the pressure drop inside an industrial plate heat exchanger during the condensation process of R134a are determined. Both experimental setups use the same type of plates, so the experimental results can be connected and a flow pattern model for the condensation in plate heat exchangers can be derived. In this work the results of the flow pattern visualization, the two-phase pressure drop in the corrugated gap and the void fraction analysis by measurement of the electrical capacity are presented. A new pressure drop correlation is derived, which takes into account different flow patterns, that appear during condensation. The mean deviation of the presented pressure drop model compared to the experimental data and data from other experimental works is 18.9%. 81.7% of the calculated pressure drop lies within ±30% compared to the experimental data.  相似文献   

11.
This research focuses on acquiring accurate flow boiling heat transfer data and flow pattern visualization for three refrigerants, R134a, R236fa and R245fa in a 1.030 mm channel. We investigate trends in the data, and their possible mechanisms, for mass fluxes from 200 to 1600 kg/m2s, heat fluxes from 2.3 kW/m2 to 250 kW/m2 at Tsat = 31 °C and ΔTsub from 2 to 9 K. The local saturated flow boiling heat transfer coefficients display a heat flux and a mass flux dependency but no residual subcooling influence. The changes in heat transfer trends correspond well with flow regime transitions. These were segregated into the isolated bubble (IB) regime, the coalescing bubble (CB) regime, and the annular (A) regime for the three fluids. The importance of nucleate boiling and forced convection in these small channels is still relatively unclear and requires further research.  相似文献   

12.
This article presents experiments conducted with two single rectangular mini-channels of same hydraulic diameter (1.4 mm) and different aspect ratios for conditions of horizontal boiling flow. The Forane® 365 HX used was subcooled (ΔTsub = 15 °C) for all the boiling curves presented in the paper. Local heat transfer coefficients were measured for heat flux ranging from 25 to 62 kW m−2 and mass flux from 200 kg m−2 s−1 to 400 kg m−2 s−1. The boiling flows were observed with two different cameras (depending on the flow velocity) through a visualization window. The flow patterns in the two channels were compared for similar conditions. The results show that the boiling heat transfer coefficient and the pressure drop values are different for the two single mini-channels. For low heat flux condition, the channel with lowest aspect ratio (H/W = 0.143) has a higher heat transfer coefficient. On the other hand, for high heat flux condition, the opposite situation occurs, namely the heat transfer coefficient becomes higher for the channel with highest aspect ratio (H/W = 0.43). This is probably due to the earlier onset of dryout in the channel with lowest aspect ratio. For the two cases of heating, the pressure drop for the two-phase flow remains lower for the channel with lowest aspect ratio. These results show that the aspect ratio plays a substantial role for boiling flows in rectangular channels. As for single-phase flows, the heat transfer characteristics are significantly influenced (even though the hydraulic diameter remains the same) by this parameter.  相似文献   

13.
Visual experiments were employed to investigate heat transfer characteristics of steam on vertical titanium plates with/without surface modifications for different surface energies. Stable dropwise condensation and filmwise condensation were achieved on two surface modification titanium plates, respectively. Dropwise and rivulet filmwise co-existing condensation form of steam was observed on unmodified titanium surfaces. With increase in the surface subcooling, the ratio of area (η) covered by drops decreased and departure diameter of droplets increased, resulting in a decrease in condensation heat transfer coefficient. Condensation heat transfer coefficient decreased sharply with the values of η decreasing when the fraction of the surface area covered by drops was greater than that covered by rivulets. Otherwise, the value of η had little effect on the heat transfer performance. Based on the experimental phenomena observed, the heat flux through the surface was proposed to express as the sum of the heat flux through the dropwise region and rivulet filmwise region. The heat flux through the whole surface was the weighted mean value of the two regions mentioned above. The model presented explains the gradual change of heat transfer coefficient for transition condensation with the ratio of area covered by drops. The simulation results agreed well with the present experimental data when the subcooling temperature is lower than 10 °C.  相似文献   

14.
带扰流小槽道内单相流动阻力特性实验   总被引:2,自引:1,他引:1  
刘东  刘明侯  王亚青  徐侃 《力学学报》2010,42(6):1006-1012
采用水作为工质, 实验研究入口或出口端加入圆柱扰流的不同高宽比多槽道散热器的压降特性; 结果表明: 单位长度压降随雷诺数成线性关系. 提出了雷诺数、水力学直径和槽道高宽比的拟合准则; 拟合公式在实验数据误差范围内很好反应类似系统的流阻特性. 对于线切割小槽道, 其摩阻系数和雷诺数成反比, 且较圆管理论值偏大; 对线切割槽道阻力特性分析发现, 表面粗糙度是其最主要的影响因素, 而扰流对其影响较小; 在槽道前部设置扰流柱可以增强换热.   相似文献   

15.
The Investigation of the two-phase flow patterns and their transitions during the condensation has gained increasing interest and importance from the well-known phenomenon that the heat transfer characteristics are strongly dependent on the flow patterns. Therefore, it is very important to study on which heat transfer enhancement approach is suitable for an individual flow pattern inside a condenser, so that an accurate heat transfer mechanism can be understood that is consistent with the flow patterns. The condensation heat transfer for R134a in the two kinds of in-tube three-dimensional (3-D) micro-fin tubes with different geometries is experimentally investigated. Based on the flow pattern observations, the flow patterns in the Soliman flow regime map are divided into two-flow regimes; one with the vapor-shear-dominant annular regime and the other with the gravitational-force-dominant stratified-wavy regime. The flow regime transition criterion between the annular regime and the stratified-wavy regime is at Fr equal to 2. In the annular regime, the heat transfer coefficients h of the two kinds of in-tube 3-D micro-fin tubes decreases as the vapor quality x decreases. The regressed condensation heat transfer correlation from the experimental data of the annular flow region is obtained. The dispersibility of the experimental data is inside the limits of ±25%. In the stratified-wavy regime, the average heat transfer coefficient h of the two kinds of in-tube 3-D micro-fin tubes increases as the mass flux increases and the number of micro fins in the 3-D micro-fin tube is not the controlling factor for the performance of a condensation heat transfer. The regressed condensation heat transfer correlation of the stratified-wavy flow regime is experimentally obtained. The dispersibility of the experimental data is inside the limits of ±22%. Combined with the criteria of flow pattern transitions, the correlations can be used for the design of a condenser with 3-D micro-fin tubes.  相似文献   

16.
We investigate the half-space problem of evaporation and condensation in the scope of discrete kinetic theory. Exact solutions are found to the boundary value problem and the initial boundary value problems of the flow in the half space for a discrete velocity model. The results are used to analyze the transition of the unsteady solutions towards steady states. To cite this article: A. d'Almeida, C. R. Mecanique 336 (2008).  相似文献   

17.
The experimental study on heat transfer of R417A and R22 flow boiling inside a horizontal smooth and two internally grooved tubes with different geometrical parameters was conducted. Based on the experimental results, evaporation heat transfer characteristics of R417A and R22 flowing in different tubes, the influence of micro-fin geometrical parameters, vapor quality and mass flux of refrigerants on heat transfer enhancement factors, and the difference of enhancement factors between R417A and R22 were analyzed and discussed. The result indicates: whether for R22 or for R417A, the enhancement effect of Tube III having the narrower distance between micro-fins excels than Tube II. The influence of vapor qualities and mass fluxes on enhancement factors for R417A is different from R22. And the difference of enhancement factors between R417A and R22 appears different cases at different vapor quality regions.  相似文献   

18.
According to flow visualizations performed in water tunnel and referring to a simple phenomenological model describing the nature of exchanges occurring within a two-dimensional mixing layer, a model was built up to specify the nature of flows ensuring the recirculating zone equilibrium over the upper surface of a delta wing at high angle of attack. Perturbing the flows equilibrium leads to delay the vortex breakdown. To cite this article: O. Rodriguez, J. Pruvost, C. R. Mecanique 333 (2005).  相似文献   

19.
A model reduction method is proposed for finite element models. A previous computation of the state of the structure is not necessary. Residuals defined over the entire time interval and the Karhunen–Loève method provide basis functions. A non-incremental algorithm, from the LATIN method, is used to compute this basis functions. Because of the non-incremental feature, the reduced order model is representative for a large evolution of the state of the structure. To cite this article: D. Ryckelynck, C. R. Mecanique 330 (2002) 499–505.  相似文献   

20.
A model of the absorption process in a vertical tubular bubble absorber working with R22-DMF, R22-DMA, R22-DMETEG, R22-DMEDEG and R22-NMP is developed using finite element method employing Galerkin's technique. The objective of this paper is to study the influence of the liquid and gas properties on the volumetric mass transfer coefficient. Analysis have also been done using ammonia-water as working fluid, the results obtained are compared with those in the literature and the agreement is found to be good. A correlation for mass transfer coefficient is proposed as a function of Reynolds number, Schmidt number and length to diameter ratio. The correlation can be used either in estimating the mass transfer rates or in fixing up any of the major design parameters namely length required for complete absorption and diameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号