首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
级环境下叶片扩压器流场的实验与数值研究   总被引:6,自引:0,他引:6  
高丽敏  席光  周莉  王尚锦 《力学学报》2005,37(1):110-119
为了研究离心压缩机级环境下的非定常干扰的基本流动现象,并验证多级叶轮机械的CFD软件的分析能力, 对一大尺度离心压缩机的叶片扩压器流场进行了实验测量和数值计算. 实验采用了固定热线、相位锁定------系综平均技术,用常温热线风速仪对叶轮后的叶片扩压器通道内不同周向、径向和轴向位置处的非定常速度进行了测量,同时提出了非定常强度的概念,以定量考核非定常的影响.实验结果表明, 叶片扩压器内的非定常流动非常复杂,其时间周期并非叶轮叶片通过时间,随着与离心叶轮之间的距离增大,非定常扰动逐渐减弱,但一直延续到叶片扩压器的出口.另外,对该实验压缩机级开展了两个不同的数值计算,并与实验数据进行了比较:定常数值计算软件采用了作者发展的确定应力模型,非定常数值计算是用商业软件NUMECA实现的,计算采用了滑移界面技术. 两个计算结果与实验在扩压器的进口截面处吻合得很好.  相似文献   

3.
采用模糊控制策略,开展介电弹性作动器的主动隔振性能试验研究。基于介电弹性材料的Maxwell应力模型建立了作动器的力电耦合模型,分析了作动器的非线性特性;针对隔振系统设计了Mamdani型模糊控制器,建立了控制电压信号与振动响应之间的关系;在此基础上,开展了介电弹性作动器主动隔振试验研究,并与加速度反馈控制进行了对比。试验结果表明,在相同驱动电压的情况下,基于模糊控制策略的主动隔振性能要优于加速度反馈控制,且能够显著降低由于非线性驱动力导致的倍频响应幅值,有助于提高隔振系统的稳定性。  相似文献   

4.
Large-eddy simulations (LES) are employed to understand the flow field over a NACA 0015 airfoil controlled by a dielectric barrier discharge (DBD) plasma actuator. The Suzen body force model is utilised to introduce the effect of the DBD plasma actuator. The Reynolds number is fixed at 63,000. Transient processes arising due to non-dimensional excitation frequencies of one and six are discussed. The time required to establish flow authority is between four and six characteristic times, independent of the excitation frequency. If the separation is suppressed, the initial flow conditions do not affect the quasi-steady state, and the lift coefficient of the higher frequency case converges very quickly. The transient states can be categorised into following three stages: (1) the lift and drag decreasing stage, (2) the lift recovery stage, and (3) the lift and drag converging stage. The development of vortices and their influence on control is delineated. The simulations show that in the initial transient state, separation of flow suppression is closely related to the development spanwise vortices while during the later, quasi-steady state, three-dimensional vortices become more important.  相似文献   

5.
Pulsatile flow fields in rigid abdominal aortic aneurysm (AAA) models were investigated numerically, and the simulation results are found in good agreement with particle image velocimetry (PIV) measurements. There are one or more vortexes in the AAA bulge, and a fairly high wall shear stress exists at the distal end, and thus the AAA is in danger of rupture. Medical treatment consists of inserting a vascular stent-graft in the AAA, which would decrease the blood impact to the inner walls and reduce wall shear stress so that the rupture could be prevented. A new computational model, based on porous medium model, was developed and results are documented. Therapeutic effect of the stent-graft was verified numerically with the new model. The project was supported by the National Natural Science Foundation of China (10672090). The English text was polished by Yunming Chen.  相似文献   

6.
刘明侯  T.L.Chan 《力学学报》2005,37(2):135-140
实验研究了狭缝射流撞击圆柱表面后壁面射流区的平均流动和湍流特 性. 考察了雷诺数 Re (6000-20000), 喷口到受撞表面距 离 Y/W (5-13), 喷口宽度 W (6.25mm, 9.38mm), 受撞表 面曲率(半圆柱体直径 D = 150mm)对流动和湍流结构的影响. 通过分析 X 热线 在壁面射流区的测量结果发现,在近壁区域,表面曲率、 Re_{w} , Y/W 和 S/W 等 参数对 \sqrt {\overline{u^2}} / U_m 的影响比对 \sqrt {\overline{v^2}} / U_m 强,并且切 应力 \overline {uv} /U_m^2 对表面曲率变化最敏感. 当喷口与受撞击表面之间的距 离 Y/W 在一定范围内增加时, 沿圆柱表面流动的流向和横向的湍流强度增强. 用平板射流和圆柱体表面壁面射流的数据进行比较,从而得到表面曲率对壁面射流特 性的影响. 结果表明,曲率对壁面射流的影响较强, 并随着 S/W 的增大而增强. 随着雷诺数的增大,壁面曲率的影响也有强化的趋势.  相似文献   

7.
High-resolution PIV measurements of the flow field inside cross-flow fans have been performed in planes normal and parallel to the fan axis, both outside and inside the impeller. The well known difficulties in obtaining the optical access inside the impeller have been overcome by allowing the internal flow planes to be illuminated by the laser light sheet or shot by the CCD camera through the moving blade vanes. Measurements have been performed in two cross-flow fans having the same two-module impeller but casing geometries based on very different design concepts. PIV data in planes normal to the rotor axis show a strong correlation between vorticity distribution and turbulent shear stresses inside the eccentric vortex of each fan. Furthermore, they provide useful elements to explain the very different performance of the two fans evidenced by their characteristic curves. Measurements in planes parallel to the impeller axis show that wide three-dimensional recirculation structures develop near the casing end walls at the discharge of the fans. These mean flow structures are responsible for the backflow into the end portions of the impeller of part of the discharged fluid, which is then transported axially by the eccentric vortex towards the rotor central disc before being discharged once again outside the impeller. In the case of cross-flow fans including few rotor modules, the existence of significant axial velocity components inside the eccentric vortex can alter substantially the flow picture, common in the current literature, resulting from 2-D numerical models or measurements performed in a single transverse plane of the fan.  相似文献   

8.
Flexible plate structures with integrated piezoelectric patches offer interesting possibilities when considered as actuation mechanisms for energy harvesting devices, cooling devices and propulsion devices of micro-aerial vehicles. Most of the studies reported in literature are based on the assumption of a 2D aerodynamic flow. However, the flow behind a finite span wing is significantly more complex than that of an infinite span wing. In order to corroborate this statement, the present experimental study contains high-speed particle image velocimetry measurements performed on a piezoelectric finite span wing oscillating in air, at 84.8 Hz. The paper focuses on the situation of low Keulegan–Carpenter numbers (KC < 3). The dimensionless KC number describes the relative importance of the drag forces over inertia forces for objects that oscillate in a fluid flow at rest. The evolution of the unsteady vortex structures near the plate is characterized for different conditions. This allows a better understanding of the unsteady aerodynamics of flapping flight. The accomplished experimental data analysis has shown that the flow phenomena are strongly dependent on the KC values.  相似文献   

9.
This paper discusses gas-dynamic aspects of intense explosions in uniform environments. In experiments, the energy of a laser is almost instantaneously released in a volume of air shaped as either a flattened or stretched cylinder generating a blast wave. Its shape evolves in time and ultimately becomes spherical. But momentum transferred to the air when the blast wave is strongly nonspherical is anisotropic. As a result, a subsonic jet and a vortex are induced and propagate along the symmetry axis or along the perpendicular plane, depending on the initial configuration of the blast wave. Simulations based on a free-Lagrangian method for a nonviscous gas are in good agreement with the experiments. Velocities, circulation, and positions of fluid particles found in computations give an insight into the causes and details of the flow. Two simultaneous and contrary processes take place – vorticity production by the anisotropic shock wave and baroclinical generation of vorticity at the boundary of the heated gas – which give rise to net circulation. Received 21 April 1997 / Accepted 27 June 1997  相似文献   

10.
The supersonic combustion RAM jet (SCRAM jet) engine is expected to be used in next-generation space planes and hypersonic airliners. To develop the engine, stabilized combustion in a supersonic flow field must be attained even though the residence time of flow is extremely short. A mixing process for breathed air and fuel injected into the supersonic flow field is therefore one of the most important design problems. Because the flow inside the SCRAM jet engine has high enthalpy, an experimental facility is required to produce the high-enthalpy flow field. In this study, a detonation-driven shock tunnel was built to produce a high-enthalpy flow, and a model SCRAM jet engine equipped with a backward-facing step was installed in the test section of the facility to visualize flow fields using a color schlieren technique and high-speed video camera. The fuel was injected perpendicularly to a Mach 3 flow behind the backward-facing step. The height of the step, the injection distance and injection pressure were varied to investigate the effects of the step on air/fuel mixing characteristics. The results show that the recirculation region increases as the fuel injection pressure increases. For injection behind the backward-facing step, mixing efficiency is much higher than with a flat plate. Also, the injection position has a significant influence on the size of the recirculation region generated behind the backward-facing step. The schlieren photograph and pressure histories measured on the bottom wall of the SCRAM jet engine model show that the fuel was ignited behind the step.Communicated by K. Takayama PACS 47.40.Ki  相似文献   

11.
12.
This paper presents the results of measurements and numerical predictions of turbulent cross-flow in a staggered tube bundle. The bundle consists of transverse and longitudinal pitch-to-diameter ratios of 3.8 and 2.1, respectively. The experiments were conducted using a particle image velocimetry technique, in a flow of water in a channel at a Reynolds number of 9300 based on the inlet velocity and the tube diameter. A commercial CFD code, ANSYS CFX V10.0, is used to predict the turbulent flow in the bundle. The steady and isothermal Reynolds–Averaged Navier–Stokes (RANS) equations were used to predict the turbulent flow using each of the following four turbulence models: a k-epsilon, a standard k-omega, a k-omega-based shear stress transport, and an epsilon-based second moment closure. The epsilon-based models used a scalable wall function and the omega-based models used a wall treatment that switches automatically between low-Reynolds and standard wall function formulations.

The experimental results revealed extremely high levels of turbulence production by the normal stresses, as well as regions of negative turbulence production. The convective transport by mean flow and turbulent diffusion were observed to be significantly higher than in classical turbulent boundary layers. As a result, turbulence production is generally not in equilibrium with its dissipation rate. In spite of these characteristics, it was observed that the Reynolds normal stresses approximated from the k-based two-equation models were in a closer agreement with experiments than values obtained from the second moment closure. The results show that none of the turbulence models was able to consistently reproduce the mean and turbulent quantities reasonably well. The omega-based models predicted the mean velocities better in the developing region while the epsilon-based models gave better results in the region where the flow is becoming spatially periodic.  相似文献   


13.
Oscillatory turbulent flow over a flat plate is studied using large eddy simulation (LES) and Reynolds-average Navier-Stokes (RANS) methods. A dynamic subgrid-scale model is employed in LES and Saffman's turbulence model is used in RANS. The flow behaviors are discussed for the accelerating and decelerating phases during the oscillating cycle. The friction force on the wall and its phase shift from laminar to turbulent regime are also investigated for different Reynolds numbers. The project supported by the Youngster Funding of Academia Sinica and by the National Natural Science Foundation of China  相似文献   

14.
A two‐phase flow model, which solves the flow in the air and water simultaneously, is presented for modelling breaking waves in deep and shallow water, including wave pre‐breaking, overturning and post‐breaking processes. The model is based on the Reynolds‐averaged Navier–Stokes equations with the k ?ε turbulence model. The governing equations are solved by the finite volume method in a Cartesian staggered grid and the partial cell treatment is implemented to deal with complex geometries. The SIMPLE algorithm is utilised for the pressure‐velocity coupling and the air‐water interface is modelled by the interface capturing method via a high resolution volume of fluid scheme. The numerical model is validated by simulating overturning waves on a sloping beach and over a reef, and deep‐water breaking waves in a periodic domain, in which good agreement between numerical results and available experimental measurements for the water surface profiles during wave overturning is obtained. The overturning jet, air entrainment and splash‐up during wave breaking have been captured by the two‐phase flow model, which demonstrates the capability of the model to simulate free surface flow and wave breaking problems.Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents results from numerical simulations of a 3-bladed horizontal axis tidal stream turbine. Initially, Reynolds Averaged Navier Stokes (RANS) k–ω Shear Stress Transport eddy-viscosity and Launder–Reece–Rodi models were used for code validation and testing of a newly implemented sliding mesh technique for an unstructured finite volume code. Wall- and blade-resolved large-eddy simulations (LES) were then performed to study the complete geometry at various tip speed ratios (TSR). Thrust and power coefficients were compared to published experimental measurements obtained from a towing tank for a range of TSR (4, 5, 6, 7, 8, 9 and 10) at a fixed hub pitch angle. A strong meandering is observed downstream of the supporting tower due to interaction between the detached tip vortices and vortex shedding from the support structure. The wake profiles and rate of recovery of velocity deficit show high sensitivity to the upstream turbulence intensities. However, the mean thrust and power coefficients were found to be less sensitive to the upstream turbulence. Comparisons between RANS and LES are also presented for the mean sectional blade pressures and mean wake velocity profiles. The paper also presents an overview of modelling and numerical issues relating to simulations for such rotating geometries.  相似文献   

16.
A fluidic oscillator can produce self-induced and self-sustaining oscillating jet by fluid supply without moving parts. This device has attracted research interest in heat and mass transfer enhancement in recent years. In the current study, a double-feedback fluidic oscillator was numerically investigated based on three-dimensional unsteady Reynolds-averaged Navier-Stokes equations (3D-URANS) while the operating fluid is an incompressible flow. Then, the results were validated with experimental data by two-dimensional time-resolved particle image velocimetry (2D-TR-PIV) and thermographic phosphor thermometry (TPT) for the velocity and temperature field, respectively. A grid sensitivity study was done by comparison of instantaneous and time-averaged flow fields. Additionally, the proper orthogonal decomposition (POD) method was used to find the phase information of the oscillating jet, and fast Fourier transform (FFT) analysis was used to find the frequency of the oscillating jet to validate the numerical results. The effect of the working fluid was also studied. Finally, in order to determine the effect of the Reynolds number on heat transfer enhancement, the Q-criterion was calculated to provide detailed insight into the oscillating mechanism. The results show that the non-dimensional frequency of oscillation is independent of either the working fluid or mass flow rate. Additionally, for a given fluid, increasing Re causes strong vortices and increases the frequency of oscillation. However, the convection heat transfer did not change significantly when varying the mass flow rate because the convection velocity of vortices increases as the mass flow rate is enhanced. A comparison with a free jet reveals that the oscillating jet in a channel is useful in terms of covering a larger area.  相似文献   

17.
A turbulent axisymmetric air jet impinging on a square cylinder mounted on a flat plate has been studied experimentally. Turbulence statistics and flow’s topology were investigated. When the surface was heated through uniform heat flux, local heat transfer coefficient was measured. The jet from a long round pipe, 75 pipe diameters (D) in length, at Reynolds number of 23,000, impinged vertically on the square cylinder (3D × 3D × 43D). Measurements were performed using particle image velocimetry, flow visualization using fluorescent dye and infrared thermography. The flow’s topology demonstrated a three-dimensional recirculation after separating from the square cylinder and a presence of foci between the bottom corner and the recirculation’s detachment line. The distribution of heat transfer coefficient was explained by the influence of these flow’s structures and the advection of kinetic energy. On the impingement wall of the square cylinder, a secondary peak in heat transfer coefficient was observed. Its origin can be attributed to very pronounced shear production coupled with the external turbulence coming from the free jet.  相似文献   

18.
Many experimental and numerical studies have been achieved to describe the transition process of deflagration to detonation when a projectile impacts an explosive. Also a large work has been done for the determination of various parameters — such as the impact pressure, the efficiency factors, etc. of the laser — material interaction. When a laser beam impacts an explosive, the P2 criterion, characteristic of shock initiated detonations, is no longer valid due to the generated hot plasma whose effect is to decrease the DDT (Deflagration to Detonation Transition) duration. The present paper deals with a modelling of the plasma-explosive medium allowing the determination of distances and times of the DDT process. The two phase modelling of the granular explosive takes into account the creation of hot spots. The pressure of the plasma is computed using a semi empirical model, while the temperature is obtained from Maxwell Boltzmann statistics. The authors focused their attention on the equation of state for the detonation products and the numerical process.  相似文献   

19.
We consider turbulent flows in a differentially heated Taylor-Couette system with an axial Poiseuille flow. The numerical approach is based on the Reynolds Stress Modeling (RSM) of [Elena and Schiestel, 1996] and [Schiestel and Elena, 1997] widely validated in various rotor-stator cavities with throughflow ( [Poncet, 2005], [Poncet et al., 2005] and [Haddadi and Poncet, 2008]) and heat transfer (Poncet and Schiestel, 2007). To show the capability of the present code, our numerical predictions are compared very favorably to the velocity measurements of Escudier and Gouldson (1995) in the isothermal case, for both the mean and turbulent fields. The RSM model improves, in particular, the predictions of the k-ε model of Naser (1997). Then, the second order model is applied for a large range of rotational Reynolds (3744 ? Rei ? 37,443) and Prandtl numbers (0.01 ? Pr ? 12), flow rate coefficient (0 ? Cw ? 30,000) in a very narrow cavity of radius ratio s = Ri/Ro = 0.961 and aspect ratio L = (Ro − Ri)/h = 0.013, where Ri and Ro are the radii of the inner and outer cylinders respectively and h is the cavity height. Temperature gradients are imposed between the incoming fluid and the inner and outer cylinders. The mean hydrodynamic and thermal fields reveal three distinct regions across the radial gap with a central region of almost constant axial and tangential mean velocities and constant mean temperature. Turbulence, which is weakly anisotropic, is mainly concentrated in that region and vanishes towards the cylinders. The mean velocity distributions are not clearly affected by the rotational Reynolds number and the flow rate coefficient. The effects of the flow parameters on the thermal field are more noticeable and considered in details. Correlations for the averaged Nusselt numbers along both cylinders are finally provided according to the flow control parameters Rei, Cw, and Pr.  相似文献   

20.
The development of a novel polymer-based micro robotic gripper that can be actuated in a fluidic medium is presented in this paper. Our current work is to explore new materials and designs for thermal actuators to achieve micromanipulation of live biological cells. We used parylene C to encapsulate a metal heater, resulting in effectively a tri-layered thermal actuator. Parylene C is a bio-compatible dielectric polymer that can serve as a barrier to various gases and chemicals. Therefore, it is suitable to serve as a thermal/electrical/chemical isolation material for protecting the metal heater from exposing to an aqueous environment. We have demonstrated parylene actuators(2 mm&#215;100/μm&#215;0.5μm) to operate in an aqueous environment using 10 to 80 mW input power. The temperature of these actuators at full deflection was estimated to be~ 60℃, which is much lower than the typical requirement of &gt; 100℃ to actuate other conventional MEMS actuators. Danio rerio follicles in fluidic medium were captured successfully using these actuators. Moreover, these actuators were found to be responsive to moderate rise in environmental temperature, and hence, we could vary the fluidic medium temperature to actuate trimorphs on a chip without any input of electrical energy, i.e., raising the fluidic temperature from 23℃ to 60℃ could actuate the trimorphs to grasp follicles of~1mm size in diameter. At 60℃, the embryos inside the follicles were observed to be alive, i.e., they were still moving in the biological fluid isolated by the follicle membrane. The smallest follicles grasped were~500μm in diameter using 800μm&#215;130μm&#215;0.6μm actuators. The fabrication process, modeling, and optimization of the trimorph actuators are presented. Based on the successful operation of these polymer-based actuators, we are currently developing multifinger thermal microgrippers for cellular grasping and manipulation, which can potentially be hybridly integrated with circuits for computer control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号