首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Core–shell hierarchical porous carbon spheres (HPCs) were synthesized by a facile hydrothermal method and used as host to incorporate sulfur. The microstructure, morphology, and specific surface areas of the resultant samples have been systematically characterized. The results indicate that most of sulfur is well dispersed over the core area of HPCs after the impregnation of sulfur. Meanwhile, the shell of HPCs with void pores is serving as a retard against the dissolution of lithium polysulfides. This structure can enhance the transport of electron and lithium ions as well as alleviate the stress caused by volume change during the charge–discharge process. The as‐prepared HPC‐sulfur (HPC‐S) composite with 65.3 wt % sulfur delivers a high specific capacity of 1397.9 mA h g?1 at a current density of 335 mA g?1 (0.2 C) as a cathode material for lithium–sulfur (Li‐S) batteries, and the discharge capacity of the electrode could still reach 753.2 mA h g?1 at 6700 mA g?1 (4 C). Moreover, the composite electrode exhibited an excellent cycling capacity of 830.5 mA h g?1 after 200 cycles.  相似文献   

2.
We report colloidal routes to synthesize silicon@carbon composites for the first time. Surface‐functionalized Si nanoparticles (SiNPs) dissolved in styrene and hexadecane are used as the dispersed phase in oil‐in‐water emulsions, from which yolk–shell and dual‐shell hollow SiNPs@C composites are produced via polymerization and subsequent carbonization. As anode materials for Li‐ion batteries, the SiNPs@C composites demonstrate excellent cycling stability and rate performance, which is ascribed to the uniform distribution of SiNPs within the carbon hosts. The Li‐ion anodes composed of 46 wt % of dual‐shell SiNPs@C, 46 wt % of graphite, 5 wt % of acetylene black, and 3 wt % of carboxymethyl cellulose with an areal loading higher than 3 mg cm−2 achieve an overall specific capacity higher than 600 mAh g−1, which is an improvement of more than 100 % compared to the pure graphite anode. These new colloidal routes present a promising general method to produce viable Si–C composites for Li‐ion batteries.  相似文献   

3.
Rational design of hollow micro‐ and/or nano‐structured cathodes as sulfur hosts has potential for high‐performance lithium‐sulfur batteries. However, their further commercial application is hindered because infusing sulfur into hollow hosts is hard to control and the interactions between high loading sulfur and electrolyte are poor. Herein, we designed hierarchical porous hollow carbon nanospheres with radially inwardly aligned supporting ribs to mitigate these problems. Such a structure could aid the sulfur infusion and maximize sulfur utilization owing to the well‐ordered pore channels. This highly organized internal carbon skeleton can also enhance the electronic conductivity. The hollow carbon nanospheres with further nitrogen‐doping as the sulfur host material exhibit good capacity and excellent cycling performance (0.044 % capacity degradation per each cycle for 1000 cycles).  相似文献   

4.
5.
6.
Non‐aqueous lithium–oxygen batteries are considered as most advanced power sources, albeit they are facing numerous challenges concerning almost each cell component. Herein, we diverge from the conventional and traditional liquid‐based non‐aqueous Li–O2 batteries to a Li–O2 system based on a solid polymer electrolyte (SPE‐) and operated at a temperature higher than the melting point of the polymer electrolyte, where useful and most applicable conductivity values are easily achieved. The proposed SPE‐based Li‐O2 cell is compared to Li–O2 cells based on ethylene glycol dimethyl ether (glyme) through potentiodynamic and galvanostatic studies, showing a higher cell discharge voltage by 80 mV and most significantly, a charge voltage lower by 400 mV. The solid‐state battery demonstrated a comparable discharge‐specific capacity to glyme‐based Li–O2 cells when discharged at the same current density. The results shown here demonstrate that the safer PEO‐based Li–O2 battery is highly advantageous and can potentially replace the contingent of liquid‐based cells upon further investigation.  相似文献   

7.
8.
A three‐dimensional (3D) hierarchical carbon–sulfur nanocomposite that is useful as a high‐performance cathode for rechargeable lithium–sulfur batteries is reported. The 3D hierarchically ordered porous carbon (HOPC) with mesoporous walls and interconnected macropores was prepared by in situ self‐assembly of colloidal polymer and silica spheres with sucrose as the carbon source. The obtained porous carbon possesses a large specific surface area and pore volume with narrow mesopore size distribution, and acts as a host and conducting framework to contain highly dispersed elemental sulfur. Electrochemical tests reveal that the HOPC/S nanocomposite with well‐defined nanostructure delivers a high initial specific capacity up to 1193 mAh g?1 and a stable capacity of 884 mAh g?1 after 50 cycles at 0.1 C. In addition, the HOPC/S nanocomposite exhibits high reversible capacity at high rates. The excellent electrochemical performance is attributed exclusively to the beneficial integration of the mesopores for the electrochemical reaction and macropores for ion transport. The mesoporous walls of the HOPC act as solvent‐restricted reactors for the redox reaction of sulfur and aid in suppressing the diffusion of polysulfide species into the electrolyte. The “open” ordered interconnected macropores and windows facilitate transportation of electrolyte and solvated lithium ions during the charge/discharge process. These results show that nanostructured carbon with hierarchical pore distribution could be a promising scaffold for encapsulating sulfur to approach high specific capacity and energy density with long cycling performance.  相似文献   

9.
The lithium–air battery has been proposed as the next‐generation energy‐storage device with a much higher energy density compared with the conventional lithium‐ion battery. However, lithium–air batteries currently suffer enormous problems including parasitic reactions, low recyclability in air, degradation, and leakage of liquid electrolyte. Besides, they are designed into a rigid bulk structure that cannot meet the flexible requirement in the modern electronics. Herein, for the first time, a new family of fiber‐shaped lithium–air batteries with high electrochemical performances and flexibility has been developed. The battery exhibited a discharge capacity of 12 470 mAh g?1 and could stably work for 100 cycles in air; its electrochemical performances were well maintained under bending and after bending. It was also wearable and formed flexible power textiles for various electronic devices.  相似文献   

10.
Confining lithium polysulfide intermediates is one of the most effective ways to alleviate the capacity fade of sulfur‐cathode materials in lithium–sulfur (Li–S) batteries. To develop long‐cycle Li–S batteries, there is an urgent need for material structures with effective polysulfide binding capability and well‐defined surface sites; thereby improving cycling stability and allowing study of molecular‐level interactions. This challenge was addressed by introducing an organometallic molecular compound, ferrocene, as a new polysulfide‐confining agent. With ferrocene molecules covalently anchored on graphene oxide, sulfur electrode materials with capacity decay as low as 0.014 % per cycle were realized, among the best of cycling stabilities reported to date. With combined spectroscopic studies and theoretical calculations, it was determined that effective polysulfide binding originates from favorable cation–π interactions between Li+ of lithium polysulfides and the negatively charged cyclopentadienyl ligands of ferrocene.  相似文献   

11.
Biomass‐derived porous carbon BPC‐700, incorporating micropores and small mesopores, was prepared through pyrolysis of banana peel followed by activation with KOH. A high specific BET surface area (2741 m2 g?1), large specific pore volume (1.23 cm3 g?1), and well‐controlled pore size distribution (0.6–5.0 nm) were obtained and up to 65 wt % sulfur content could be loaded into the pores of the BPC‐700 sample. When the resultant C/S composite, BPC‐700‐S65, was used as the cathode of a Li–S battery, a large initial discharge capacity (ca. 1200 mAh g?1) was obtained, indicating a good sulfur utilization rate. An excellent discharge capacity (590 mAh g?1) was also achieved for BPC‐700‐S65 at the high current rate of 4 C (12.72 mA cm?2), showing its extremely high rate capability. A reversible capacity of about 570 mAh g?1 was achieved for BPC‐700‐S65 after 500 cycles at 1 C (3.18 mA cm?2), indicating an outstanding cycling stability.  相似文献   

12.
Tin–iron–carbon nanocomposite is successfully prepared by a sol–gel method followed by a chemical vapor deposition (CVD) process with acetylene gas as the carbon source. The structural properties, morphology, and electrochemical performances of the nanocomposite are comprehensively studied in comparison with those properties of tin–carbon and iron–carbon nanocomposites. Sheet‐like carbon architecture and different carbon contents are induced thanks to the catalytic effect of iron during CVD. Among three nanocomposites, tin–iron–carbon demonstrates the highest reversible capacity of 800 mA h g?1 with 96.9 % capacity retention after 50 cycles. It also exhibits the best rate capability with a discharge capacity of 420 mA h g?1 at a current density of 1000 mA g?1. This enhanced performance is strongly related to the carbon morphology and content, which can not only accommodate the large volume change, but also improve the electronic conductivity of the nanocomposite. Hence, the tin–iron–carbon nanocomposite is expected to be a promising anode for lithium‐ion batteries.  相似文献   

13.
An aligned and laminated sulfur‐absorbed mesoporous carbon/carbon nanotube (CNT) hybrid cathode has been developed for lithium–sulfur batteries with high performance. The mesoporous carbon acts as sulfur host and suppresses the diffusion of polysulfide, while the CNT network anchors the sulfur‐absorbed mesoporous carbon particles, providing pathways for rapid electron transport, alleviating polysulfide migration and enabling a high flexibility. The resulting lithium–sulfur battery delivers a high capacity of 1226 mAh g−1 and achieves a capacity retention of 75 % after 100 cycles at 0.1 C. Moreover, a high capacity of nearly 900 mAh g−1 is obtained for 20 mg cm−2, which is the highest sulfur load to the best of our knowledge. More importantly, the aligned and laminated hybrid cathode endows the battery with high flexibility and its electrochemical performances are well maintained under bending and after being folded for 500 times.  相似文献   

14.
A hollow carbon nanofiber hybrid nanostructure anchored with titanium dioxide (HCNF@TiO2) was prepared as a matrix for effective trapping of sulfur and polysulfides as a cathode material for Li–S batteries. The synthesized composites were characterized and examined by X‐ray diffraction, nitrogen adsorption–desorption measurements, field‐emission scanning electron microscopy, scanning transmission electron microscopy, and electrochemical methods such as galvanostatic charge/discharge, rate performance, and electrochemical impedance spectroscopy tests. The obtained HCNF@TiO2–S composite showed a clear core–shell structure with TiO2 nanoparticles coating the surface of the HCNF and sulfur homogeneously distributed in the coating layer. The HCNF@TiO2–S composite exhibited much better electrochemical performance than the HCNF–S composite, which delivered an initial discharge capacity of 1040 mA h g?1 and maintained 650 mAh g?1 after 200 cycles at a 0.5 C rate. The improvements of electrochemical performances might be attributed to the unique hybrid nanostructure of HCNF@TiO2 and good dispersion of sulfur in the HCNF@TiO2–S composite.  相似文献   

15.
16.
17.
Prelithiation is of great interest to Li‐ion battery manufacturers as a strategy for compensating for the loss of active Li during initial cycling of a battery, which would otherwise degrade its available energy density. Solution‐based chemical prelithiation using a reductive chemical promises unparalleled reaction homogeneity and simplicity. However, the chemicals applied so far cannot dope active Li in Si‐based high‐capacity anodes but merely form solid–electrolyte interphases, leading to only partial mitigation of the cycle irreversibility. Herein, we show that a molecularly engineered Li–arene complex with a sufficiently low redox potential drives active Li accommodation in Si‐based anodes to provide an ideal Li content in a full cell. Fine control over the prelithiation degree and spatial uniformity of active Li throughout the electrodes are achieved by managing time and temperature during immersion, promising both fidelity and low cost of the process for large‐scale integration.  相似文献   

18.
In situ mixtures of CdCl2?TMEDA (0.5 equiv; TMEDA=N,N,N′,N′‐tetramethylethylenediamine) or InCl3 (0.33 equiv) with [Li(tmp)] (tmp=2,2,6,6‐tetramethylpiperidino; 1.5 or 1.3 equiv, respectively) were compared with the previously described mixture of ZnCl2?TMEDA (0.5 equiv) and [Li(tmp)] (1.5 equiv) for their ability to deprotonate anisole, benzothiazole, and pyrimidine. [(tmp)3CdLi] proved to be the best base when used in tetrahydrofuran at room temperature, as demonstrated by subsequent trapping with iodine. The Cd–Li base then proved suitable for the metalation of a large range of aromatics including benzenes bearing reactive functional groups (CONEt2, CO2Me, CN, COPh) or heavy halogens (Br, I), and heterocycles (from the furan, thiophene, pyrrole, oxazole, thiazole, pyridine, and diazine series). Five‐membered heterocycles benefiting from doubly activated positions were similarly dideprotonated at room temperature. The aromatic lithium cadmates thus obtained were involved in palladium‐catalyzed cross‐coupling reactions or simply quenched with acid chlorides.  相似文献   

19.
The lithium–sulfur battery is regarded as one of the most promising candidates for lithium–metal batteries with high energy density. However, dendrite Li formation and low cycle efficiency of the Li anode as well as unstable sulfur based cathode still hinder its practical application. Herein a novel electrolyte (1 m LiODFB/EC‐DMC‐FEC) is designed not only to address the above problems of Li anode but also to match sulfur cathode perfectly, leading to extraordinary electrochemical performances. Using this electrolyte, lithium|lithium cells can cycle stably for above 2000 hours and the average Coulumbic efficiency reaches 98.8 %. Moreover, the Li–S battery delivers a reversible capacity of about 1400 mAh g?1sulfur with retention of 89 % for 1100 cycles at 1 C, and a capacity above 1100 mAh g?1sulfur at 10 C. The more advantages of this cell system are its outstanding cycle stability at 60 °C and no self‐discharge phenomena.  相似文献   

20.
Tin anode materials have attracted much attention owing to their high theoretical capacity, although rapid capacity fade is commonly observed mainly because of structural degradation resulting from volume expansion. Herein, we report a versatile strategy based on a basil seed inspired design for constructing a monodisperse core–shell Sn@C hybrid confined in a carbon matrix (Sn basil seeds). Analogous to the structure of basil seeds soaked in water, Sn basil seeds are used to tackle the volume expansion problem in lithium‐ion batteries. Monodisperse Sn cores are encapsulated by a thick carbon layer, which thus lowers the electrolyte contact area. The obtained Sn basil seeds are closely packed to construct a framework that supplies fast electron transport and provides a reinforced mechanical backbone. As a consequence, an ensemble of this hybrid network shows significantly enhanced lithium‐storage performance with a high capacity of 870 mAh g?1 at a current density of 0.4 A g?1 over 600 cycles. After the intense cycling, the Sn cores transform into ultrafine nanocrystals with sizes of 3–6 nm. The structural and morphological evolution of the Sn cores can reasonably explain the gradual increase in the capacity and the long‐term cycling ability of our Sn basil seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号