首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Proteins and protein‐based assemblies represent the most structurally and functionally diverse molecules found in nature. Protein cages, viruses and bacterial microcompartments are highly organized structures that are composed primarily of protein building blocks and play important roles in molecular ion storage, nucleic acid packaging and catalysis. The outer and inner surface of protein cages can be modified, either chemically or genetically, and the internal cavity can be used to template, store and arrange molecular cargo within a defined space. Owing to their structural, morphological, chemical and thermal diversity, protein cages have been investigated extensively for applications in nanotechnology, nanomedicine and materials science. Here we provide a concise overview of the most common icosahedral viral and nonviral assemblies, their role in nature, and why they are highly attractive scaffolds for the encapsulation of functional materials.  相似文献   

2.
3.
4.
5.
6.
7.
8.
The protection of primary amines available in proteins holds great potential to introduce a plethora of diverse functionalities along the protein backbone (e.g., via its carboxylic acid or alcohol moieties) while circumventing the crosslinking issue using conventional approaches. This paper reports on a straightforward and efficient proof‐of‐concept including the chemoselective N‐tert‐butyloxycarbonylation of the primary amines in the protein gelatin (gel‐NH‐BOC), followed by introducing crosslinkable methacrylamide moieties. The reaction is performed successfully under relatively mild conditions (50 °C). Following selective protein functionalization, the deprotection is realized by adding a catalytic amount of an aqueous hydrogen chloride solution. The present communication illustrates the occurrence of a straightforward and selective deprotection procedure, which is typically required to circumvent the occurrence of acidic hydrolysis of the protein backbone. The results hold promise for a large range of biomedical applications in which the presence of primary amines is essential for preserving the biological activity.

  相似文献   


9.
A fluorescent protein‐labeling strategy was developed in which a protein of interest (POI) is genetically tagged with a short peptide sequence presenting two Cys residues that can selectively react with synthetic fluorogenic reagents. These fluorogens comprise a fluorophore and two maleimide groups that quench fluorescence until they both undergo thiol addition during the labeling reaction. Novel fluorogens were prepared and kinetically characterized to demonstrate the importance of a methoxy substituent on the maleimide in suppressing reactivity with glutathione, an intracellular thiol, while maintaining reactivity with the dithiol tag. This system allows the rapid and specific labeling of intracellular POIs.  相似文献   

10.
A multimodal activity‐based probe for targeting acidic organelles was developed to measure subcellular native enzymatic activity in cells by fluorescence microscopy and mass spectrometry. A cathepsin‐reactive warhead conjugated to a weakly basic amine and a clickable alkyne, for subsequent appendage of a fluorophore or biotin reporter tag, accumulated in lysosomes as observed by structured illumination microscopy (SIM) in J774 mouse macrophage cells. Analysis of in vivo labeled J774 cells by mass spectrometry showed that the probe was very selective for cathepsins B and Z, two lysosomal cysteine proteases. Analysis of starvation‐induced autophagy, a catabolic pathway involving lysosomes, showed a large increase in the number of tagged proteins and an increase in cathepsin activity. The organelle‐targeting of activity‐based probes holds great promise for the characterization of enzyme activities in the myriad diseases linked to specific subcellular locations, particularly the lysosome.  相似文献   

11.
Although site‐specific incorporation of artificial functionalities into proteins is an important tool in both basic and applied research, it can be a major challenge to protein chemists. Enzymatic protein modification is an attractive goal due to the inherent regio‐ and stereoselectivity of enzymes, yet their specificity remains a problem. As a result of the intrinsic reversibility of enzymatic reactions, proteinases can in principle catalyze ligation reactions. While this makes them attractive tools for site‐specific protein bioconjugation, competing hydrolysis reactions limits their general use. Here we describe the design and application of a highly specific trypsin variant for the selective modification of N‐terminal residues of diverse proteins with various reagents. The modification proceeds quantitatively under native (aqueous) conditions. We show that the variant has a disordered zymogen‐like activation domain, effectively suppressing the hydrolysis reaction, which is converted to an active conformation in the presence of appropriate substrates.  相似文献   

12.
Spatial and temporal control over chemical and biological processes plays a key role in life and material sciences. Here we synthesized a two‐photon‐activatable glutathione (GSH) to trigger the interaction with glutathione S‐transferase (GST) by light at superior spatiotemporal resolution. The compound shows fast and well‐confined photoconversion into the bioactive GSH, which is free to interact with GST‐tagged proteins. The GSH/GST interaction can be phototriggered, changing its affinity over several orders of magnitude into the nanomolar range. Multiplexed three‐dimensional (3D) protein networks are simultaneously generated in situ through two‐photon fs‐pulsed laser‐scanning excitation. The two‐photon activation facilitates the three‐dimensional assembly of protein structures in real time at hitherto unseen resolution in time and space, thus opening up new applications far beyond the presented examples.  相似文献   

13.
The synthesis of some 3‐aryl‐3‐(trifluoromethyl)3H‐diazirine and benzophenone‐based photoaffinity labels is reported. The photolabile group is bound to a scaffold that also accommodates functional groups to which an indicator unit (biotin) and the bioactive ligand can be attached orthogonally. To three of the labels, moenomycin was conjugated with the aim to provide tools for the identification of the moenomycin binding site within the transglycosylase domain of the enzyme PBP 1b. Some preliminary photoaffinity‐labeling experiments were carried out.  相似文献   

14.
15.
The last decade has seen development and application of a large number of novel fluorescence‐based techniques that have revolutionized fluorescence microscopy in life sciences. Preferred tags for such applications are genetically encoded fluorescent proteins (FP), mostly derivatives of the green fluorescent protein (GFP). Combinations of FPs with wavelength‐separated absorption/fluorescence properties serve as excellent tools for molecular interaction studies, for example, protein–protein complexes or enzyme–substrate interactions, based on the FRET phenomenon (Förster resonance energy transfer). However, alternatives are requested for experimental conditions where FP proteins or FP couples are not or less efficiently applicable. We here report as a “proof of principle” a specially designed, non‐naturally occurring protein (LG1) carrying a combination of a flavin‐binding LOV‐ and a photochromic bilin‐binding GAF domain and demonstrate a FRET process between both chromophores.  相似文献   

16.
Long‐chain fatty acids (FAs) with low water solubility require fatty‐acid‐binding proteins (FABPs) to transport them from cytoplasm to the mitochondria for energy production. However, the precise mechanism by which these proteins recognize the various lengths of simple alkyl chains of FAs with similar high affinity remains unknown. To address this question, we employed a newly developed calorimetric method for comprehensively evaluating the affinity of FAs, sub‐Angstrom X‐ray crystallography to accurately determine their 3D structure, and energy calculations of the coexisting water molecules using the computer program WaterMap. Our results clearly showed that the heart‐type FABP (FABP3) preferentially incorporates a U‐shaped FA of C10–C18 using a lipid‐compatible water cluster, and excludes longer FAs using a chain‐length‐limiting water cluster. These mechanisms could help us gain a general understanding of how proteins recognize diverse lipids with different chain lengths.  相似文献   

17.
18.
19.
The development of bioorthogonal approaches for labeling of endogenous proteins under the multimolecular crowding conditions of live cells is highly desirable for the analysis and engineering of proteins without using genetic manipulation. N‐Sulfonyl pyridone (SP) is reported as a new reactive group for protein sulfonylation. The ligand‐directed SP chemistry was able to modify not only purified proteins in vitro, but also endogenous ones on the surface of and inside live cells selectively and rapidly, which allowed to convert endogenous proteins to FRET‐based biosensors in situ.  相似文献   

20.
Protein disulfide isomerase (PDI) can assist immature proteins to correctly fold by controlling cysteinyl disulfide (SS)‐relating reactions (i. e., SS‐formation, SS‐cleavage, and SS‐isomerization). PDI controls protein quality by suppressing protein aggregation, as well as functions as an oxidative folding catalyst. Following the amino acid sequence of the active center in PDI, basic amino acid conjugates of 1,2‐diselenan‐4‐amine ( 1 ), which show oxidoreductase‐ and isomerase‐like activities for SS‐relating reactions, were designed as a novel PDI model compound. By conjugating the amino acids, the diselenide reduction potential of compound 1 was significantly increased, causing improvement of the catalytic activities for all SS‐relating reactions. Furthermore, these compounds, especially histidine‐conjugated one, remarkably suppressed protein aggregation even at low concertation (0.3 mM~). Thus, it was demonstrated that the conjugation of basic amino acids into 1 simultaneously achieves the enhancement of the redox reactivity and the capability to suppress protein aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号