首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The nonazeotropic binary mixtures such as, methanol/water, ethanol/water and ammonia/water, have variable boiling and dew points, depending on the combination of substance and those mass fraction. It is expected to have a higher performance as a result of decreasing the thermodynamically irreversible loss, when there is a relevant mass fraction. Therefore, ammonia/water mixture is expected to use as working fluid in small temperature difference power generation cycles and absorption refrigeration cycles. However, few experiments were carried out for measuring heat transfer coefficient for ammonia/water mixture in the world. An experimental study has been carried out to measure boiling heat transfer coefficient of an ammonia/water mixture on a horizontal heated surface at low pressure of 0.2, 0.4 and 0.7 MPa and at low mass fraction of 0 < C < 0.27 and at high pressure 0.7, 1.0 and 1.5 MPa and at mass fraction of 0.5 < C < 1.0 and at heat flux under critical heat flux the heat transfer coefficient are compared with existing correlations prediction and a revised correlation can be proposed to predict them well.  相似文献   

2.
Nucleate pool boiling heat transfer coefficients were measured during pool boiling of the mixtures of Citric acid/water on a horizontal heated Cylinder. The experiment was done at atmospheric pressure and heat fluxes up to 113 kW m−2 and mass fraction range 0.1496–0.613 over all ranges of mass fraction, the heat transfer coefficients of the mixtures are markedly less than those in single component substances and, in particular, are dramatically deteriorated in the vicinity of both single component substances. An applicability of existing correlations to the present experimental data is discussed. As a result, it is difficult for any existing correlation to predict the true values of pool boiling heat transfer coefficients over all ranges of mass fraction in mixtures of citric acid/water. Available correlation results were not exactly adapted to experimental data and for the best estimation, a new modified model based on Stephan-Kroner has been achieved with reasonable accuracy. Also the status of bubble generation showed that nucleation site density is strictly functioning of heat flux.  相似文献   

3.
In this investigation, a large number of experiments have been performed to determine saturated nucleate pool boiling heat transfer coefficients of MEA/water and DEA/water binary mixtures and that of water/MEA/DEA ternary mixtures. These heat transfer coefficients have been measured at atmospheric pressure and over a wide range of heat fluxes and solution concentrations. The heat flux has been varied in 14 different levels from 7 to about 230 kW/m2 and amines concentration has been changed in 10 different levels from zero to 84 wt%. Results show that strong reduction of heat transfer coefficient occurs as a result of mass transfer interference in this phenomenon. Furthermore, in this study, all the correlations proposed during the last years for the prediction of nucleate boiling heat transfer coefficient of mixtures have been categorized in three groups. Some experimental results have been compared with the most accurate representatives of these three groups and the corresponding RMS errors have been calculated. Also, impacts of important existing parameters in these correlations like ideal heat transfer coefficient (hid.) on the prediction have been discussed.  相似文献   

4.
Experimental studies on enhancing the pool boiling heat transfer coefficient of binary dilute mixtures of water/glycerol, water/MEG (Mono-ethylene glycol) and water/DEG (di-ethylene glycol) have been carried out. Some particular endothermic chemical reactions related to ammonium salts were used to enhance the pool boiling heat transfer coefficient, simultaneously with occurrence of pool boiling heat transfer. Accordingly, 100?g of Ammonium nitrate, ammonium perborate and Ammonium sulfate were selected to dissolve into mixtures. High and extreme solution enthalpies of each of these ammonium salt powders are employed to reduce the surface temperature around the horizontal cylinder locally. Results demonstrated that presence of ammonium salts into the mixtures deteriorates the surface temperature of cylinder and as the result, higher pool boiling heat transfer coefficient is reported for tested solutions. Results are also reported and compared for different ammonium salts to find the influence of inducing different enthalpies of solution on pool boiling heat transfer coefficient. Obtained results also indicated that presence of endothermic reaction besides the pool boiling heat transfer enhances the heat transfer coefficients in comparison with nucleate pool boiling phenomenon solely.  相似文献   

5.
Zusammenfassung In der vorliegenden Arbeit wird der Wärmeübergang von drei Stahlheizstäben mit unterschiedlicher Oberfläche verglichen. Ein Heizstab wurde mit einer perforierten Messingfolie umhüllt, der zweite mit Teflon beschichtet, während der dritte unbeschichtet verwendet wurde. Als Testflüssigkeiten wurden Wasser, Azeton, Isopropanol und deren Mischungen verwendet.
The influence of a coating of the heating surface on the heat transfer coefficient during pool boiling of water, isopropanol, acetone and their mixtures
This article compares pool boiling heat transfer from three stainless steel heating rods with different surfaces. One heating rod was covered with a perforated brass foil, one was coated with teflon and the third was used without any coating. Water, acetone, isopropanol and their mixtures were used as test liquids.
  相似文献   

6.
The nucleate pool boiling heat transfer coefficient of ammonia/water mixture was investigated on a cylindrical heated surface at low pressure of 4-8 bar and at low mass fraction of 0 < xNH3 < 0.3 and at different heat flux. The effect of mass fraction, heat flux and pressure on boiling heat transfer coefficient was studied. The results indicate that the heat transfer coefficient in the mixture decreases with increase in ammonia mass fraction, increases with increase in heat flux and pressure in the investigated range. The measured heat transfer coefficient was compared with existing correlations. The experimental data were predicted with an accuracy of ±20% by the correlation of Calus&Rice, correlation of Stephan-Koorner and Inoue-Monde correlation for ammonia/water mixture in the investigated range of low ammonia mass fraction. The empirical constant of the first two correlations is modified by fitting the correlation to the present experimental data. The modified Calus&Rice correlation predicts the present experimental data with an accuracy of ±18% and the modified Stephan-Koorner correlation with an accuracy of ±16%.  相似文献   

7.
Rajulu  K. G.  Kumar  Ravi  Mohanty  Bikash  Varma  H. K. 《Heat and Mass Transfer》2004,41(2):127-132
The pool boiling of acetone, isopropanol, ethanol and water at atmospheric pressure has been carried out on a plain tube, and five different reentrant cavity (REC) heating tubes. The heat flux has remained in a range of 11–42 kW/m2 for all the heating tubes. The enhancement factor, E, has been found to increase with the rise in heat flux, irrespective of the boiling liquid and the test-section tube combinations. For the pool boiling of acetone and isopropanol, the maximum enhancement factor has been attained for REC-2 tube with mouth size of 0.3 mm and for ethanol and water the mouth size could not be optimized, however, the maximum enhancement factor has been attained for REC-4 tube with mouth size of 0.2 mm. A correlation has also been developed to predict the enhancement factor, E, for the pool boiling of the test-liquids on REC heating tubes. This correlation has predicted the enhancement factor, E, in an error band of +12.5 to –7.5%.  相似文献   

8.
Film boiling of binary liquid mixtures may be significantly different from that of single-component liquids due to the mass diffusion effect. A theoretical analysis is performed to outline the effects of mass diffusion phenomena on film boiling heat transfer process from a horizontal cylinder heating surface to the binary liquid mixtures of ethylene oxide/water and ethanol/benzene over whole range of compositions. These two binary systems are chosen for illustrating the strong and weak mass diffusion effects, respectively, on film boiling. Furthermore, a simple correlation for predicting heat transfer coefficient is proposed to demonstrate the idea that the dimensionless F factor can satisfactorily account for the mass diffusion effect on film boiling heat transfer of binary mixtures.  相似文献   

9.
A fractal model for the subcooled flow boiling heat transfer is proposed in this paper. The analytical expressions for the subcooled flow boiling heat transfer are derived based on the fractal distribution of nucleation sites on boiling surfaces. The proposed fractal model for the subcooled flow boiling heat transfer is found to be a function of wall superheat, liquid subcooling, bulk velocity of fluid (or Reynolds number), fractal dimension, the minimum and maximum active cavity size, the contact angle and physical properties of fluid. No additional/new empirical constant is introduced, and the proposed model contains less empirical constants than the conventional models. The proposed model takes into account all the possible mechanisms for subcooled flow boiling heat transfer. The model predictions are compared with the existing experimental data, and fair agreement between the model predictions and experimental data is found for different bulk flow rates.  相似文献   

10.
Experimental studies were conducted on heat transfer on a horizontal platinum wire during nucleate pool boiling in nonazeotropic binary mixtures of R12+R113, R134a+R113, R22+R113 and R22+R11, at pressures of 0.25 to 0.7 MPa and at heat fluxes up to critical heat flux. The substances employed were chosen such that the components of a given mixture had a large difference in saturation temperatures. The boiling features of the mixtures and the pure substances were observed by photography. The relationship between the boiling features and the reduction in heat transfer coefficient in binary mixtures is discussed in order to propose a correlation useful for predicting the experimental data measured over a wide range of low and high heat fluxes. It is shown that the correlation is applicable also to alcoholic mixtures. The physical role of k, which was introduced to evaluate the effect of heat flux on the reduction in heat transfer coefficient, is clarified based on the measured nucleate pool boiling heat transfer data and the visual observations of the boiling features. Received on 13 May 1997  相似文献   

11.
Investigations of two-phase heat transfer in the saturated flow-boiling region for multi-component mixtures has led to a proposed new correlation for the heat transfer coefficient where heat transfer of boiling is simply expressed in terms of the boiling number. This correlation was tested against the existing data on forced convective boiling heat transfer reported in the literature, giving satisfactory results; the correlation should, however, be tested further against wider data on convective heat transfer coefficients in multicomponent systems. The present lack of such data should be remedied.  相似文献   

12.
Researches on two-phase flow and pool boiling heat transfer in microgravity, which included ground-based tests, flight experiments, and theoretical analyses, were conducted in the National Microgravity Laboratory/CAS. A semi-theoretical Weber number model was proposed to predict the slug-to-annular flow transition of two-phase gas–liquid flows in microgravity, while the influence of the initial bubble size on the bubble-to-slug flow transition was investigated numerically using the Monte Carlo method. Two-phase flow pattern maps in microgravity were obtained in the experiments both aboard the Russian space station Mir and aboard IL-76 reduced gravity airplane. Mini-scale modeling was also used to simulate the behavior of microgravity two-phase flow on the ground. Pressure drops of two-phase flow in microgravity were also measured experimentally and correlated successfully based on its characteristics. Two space experiments on pool boiling phenomena in microgravity were performed aboard the Chinese recoverable satellites. Steady pool boiling of R113 on a thin wire with a temperature-controlled heating method was studied aboard RS-22, while quasi-steady pool boiling of FC-72 on a plate was studied aboard SJ-8. Ground-based experiments were also performed both in normal gravity and in short-term microgravity in the drop tower Beijing. Only slight enhancement of heat transfer was observed in the wire case, while enhancement in low heat flux and deterioration in high heat flux were observed in the plate case. Lateral motions of vapor bubbles were observed before their departure in microgravity. The relationship between bubble behavior and heat transfer on plate was analyzed. A semi-theoretical model was also proposed for predicting the bubble departure diameter during pool boiling on wires. The results obtained here are intended to become a powerful aid for further investigation in the present discipline and development of two-phase systems for space applications.  相似文献   

13.
We report the results of an experimental investigation of the heat transfer during nucleate boiling on a spatially confined boiling surface. The heat flux as a function of the boiling surface temperature was measured in pool boiling pots with diameters ranging from 15 mm down to 4.5 mm. It was found that a reduction of the pool diameter leads to an enhancement of the nucleate boiling heat flux for most of the boiling curve. Our experimental results indicate that this enhancement is not affected by the depth of the boiling pot, the material of the bounding wall, or the diameter of the inlet water supply. High-speed camera imaging shows that the heat transfer enhancement for the spatially confined pool boiling occurs in conjunction with a stable circulating flow, which is in contrast to the chaotic and mainly upward motion for boiling in larger pool diameters. An explanation for the enhancement of the heat transfer and the associated change in flow pattern is found in the singularisation of the nucleate boiling process.  相似文献   

14.
In desalinization devices and some heat exchangers making use of low-quality heat energy, both wall temperatures and wall heat fluxes of the heated tubes are generally quite low; hence they cannot cause boiling in flooded tube-bundle evaporators with common large tube spacing. However, when the tube spacing is very small, the incipient boiling in restricted spaces can generate and results in higher heat transfer than that of pool boiling at the same heat flux. This study investigated experimentally the effects of tube spacing, positions of tubes and test pressures on the boiling heat transfer of water in restricted spaces of the compact in-line bundles consisting of smooth horizontal tubes. The experimental results show that tube spacing and tube position have significant effects on the boiling heat transfer in a compact tube bundle. There is an optimum tube spacing that provides the largest heat transfer coefficient at the same heat flux.  相似文献   

15.
SO2 gas is injected into the different pure liquids using new innovative method via meshed tubes. Many experiments have been performed to investigate the influence of gas injection process on the pool boiling heat transfer coefficient of pure liquids around the horizontal cylinder at different heat fluxes up to 114 kW m?2. Results demonstrate that presence of SO2 gas into the vapor inside the bubbles creates a mass transfer driving force between the vapor phase inside the formed bubbles and liquid phase and also between the gas/liquid interfaces. Local turbulences and agitations due to the gas injection process around the nucleation sites leads the pool boiling heat transfer coefficient to be dramatically enhanced. Besides, some of earlier well-known correlations were unable to obtain the reasonable values for the pool boiling heat transfer coefficients in this particular case. Therefore, the most accurate correlation among the examined correlations was modified to estimate the pool boiling heat transfer coefficient of pure liquids. Experimental data were in a good agreement with those of obtained by the new modified correlation with absolute average deviation of 10 %.  相似文献   

16.
Heat transfer coefficients in nucleate pool boiling of binary and ternary non-azeotropic hydrocarbon mixtures were obtained experimentally using a vertical electrically heated cylindrical carbon steel surface at atmospheric pressure with several surface roughness. The fluids used were Methanol/1-Pentanol and Methanol/1-Pentanol/1,2-Propandiol at constant 1,2-Propandiol mole fraction of 30%. Heat fluxes were varied in the range 25–235 kW/m2. The cylindrical heater surface was polished to an average surface roughness of 0.2 μm, and sandblasted yielding surface roughness of 2.98 and 4.35 μm, respectively. The experimental results were compared to available prediction correlations, indicating that the correlations based on the boiling range are in better qualitative agreement than correlations based on the phase envelope. Increasing surface roughness resulted in an increase in the heat transfer coefficient, and the effect was observed to be dependent on the heat flux and fluid composition.  相似文献   

17.
A review of pool and forced convective boiling of binary mixtures   总被引:1,自引:0,他引:1  
Boiling of binary mixtures is characterized by a close linking between heat and mass transfer processes, with the evaporation rate usually being limited by the mass transfer process. This is significantly different from single-component systems where interfacial mass transfer rates are normally very high. Information on pool boiling of binary mixtures is widely available in the literature, whereas research on forced convective boiling of mixtures has become significant only over the last few years. This paper presents a brief review of experimental results obtained in pool and forced convective boiling of binary mixtures and upgrades the empirical or theoretical predictive tools for both situations.  相似文献   

18.
Nucleate pool boiling experiments for binary mixtures, which are consisted of R11 and R113, were performed with constant wall temperature condition. Results for binary mixtures were also compared with pure fluids. A microscale heater array and Wheatstone bridge circuits were used to maintain the constant temperature of the heating surface and to obtain heat flow rate measurements with high temporal and spatial resolutions. Bubble growth images were captured using a high-speed CCD camera synchronized with the heat flow rate measurements.The departure time for binary mixtures was longer than that for pure fluids, and binary mixtures had a higher onset of nucleate boiling (ONB) temperature than pure fluids. In the asymptotic growth region, the bubble growth rate was proportional to a value between t1/6 and t1/4. The bubble growth behavior was analyzed to permit comparisons with binary mixtures and pure fluids at the same scale using dimensionless parameters. There was no discernible difference in the bubble growth behavior between binary mixtures and pure fluids for a given ONB temperature. And the departure radius and time were well predicted within a ±30% error.The minimum heat transfer coefficient of binary mixtures occurred near the maximum |yx| value, and the average required heat flux during bubble growth did not depend on the mass fraction of R11 as more volatile component in binary mixtures. Finally, the results showed that for binary mixtures, a higher ONB temperature had the greatest effect on reducing the heat transfer coefficient.  相似文献   

19.
The present paper addresses the qualitative and quantitative analysis of the pool boiling heat transfer over micro-structured surfaces. The surfaces are made from silicon chips, in the context of pool boiling heat transfer enhancement of immersion liquid cooling schemes for electronic components. The first part of the analysis deals with the effect of the liquid properties. Then the effect of surface micro-structuring is discussed, covering different configurations, from cavities to pillars being the latter used to infer on the potential profit of a fin-like configuration. The use of rough surfaces to enhance pool boiling mainly stands on the arguments that the surface roughness will increase the liquid–solid contact area, thus enhancing the convection heat transfer coefficient and will promote the generation of nucleation sites. However, one should not disregard bubble dynamics. Indeed, the results show a strong effect of bubble dynamics and particularly of the interaction mechanisms in the overall cooling performance of the pair liquid–surface. The inaccurate control of these mechanisms leads to the formation of large bubbles and strong vertical and horizontal coalescence effects promote the very fast formation of a vapor blanket, which causes a steep decrease of the heat transfer coefficient. This effect can be strong enough to prevail over the benefit of increasing the contact area by roughening the surface. For the micro-patterns used in the present work, the results evidence that one can reasonably determine guiding pattern characteristics to evaluate the intensity of the interaction mechanisms and take out the most of the patterning to enhance pool boiling heat transfer, when using micro-cavities. Instead, it is far more difficult to control the appearance of active nucleation sites and the optimization of the patterns allowing a reasonable control of the interaction mechanisms and in particular of horizontal coalescence, when dealing with the patterns based on micro-pillars. Hence, providing an increase of the liquid contact area by an effective increase of the roughness ratio is not enough to assure a good performance of the micro-structured surface. Despite it was not possible to clearly evidence a pin–fin effect or of an additional cooling effect due to liquid circulation between the pillars, the results show a significant increase of the heat transfer coefficient of about 10 times for water and 8 times for the dielectric fluid, in comparison to the smooth surface, when the micro-patterning based on pillars is used.  相似文献   

20.
Free convection phenomenon has been experimentally investigated around a horizontal rod heater in carbonic acid solution. Because of the tendency of the solution to desorb carbon dioxide gas when temperature is increased, bubbles appear when cylinder surface is heated. The bubbles consists mainly carbon dioxide and also a negligible amount of water vapor. The results present that dissolved carbon dioxide in water significantly enhances the heat transfer coefficient in compare to pure free convection regime. This is mainly due to the microscale mixing on the heat transfer surface, which is induced by bubble formation. In this investigation, experiments are performed at different bulk temperatures between 288 and 333 K and heat fluxes up to 400 kW m−2 at atmospheric pressure. Bubble departure diameter, nucleation site density and heat transfer coefficient have been experimentally measured. A model has been proposed to predict the heat transfer coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号