首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A combined experimental and numerical investigation of flow control actuation in a short, rectangular, diffusing S-shape inlet duct using a two-dimensional tangential control jet was conducted. Experimental and numerical techniques were used in conjunction as complementary techniques, which are utilized to better understand the complex flow field. The compact inlet had a length-to-hydraulic diameter ratio of 1.5 and was investigated at a free-stream Mach number of 0.44. In contrast to the baseline flow, where the flow field was fully separated, the two-dimensional control jet was able to eliminate flow separation at the mid-span portion of the duct and changed considerably the three-dimensional flow field, and ultimately, the inlet performance. A comparison between the baseline (no actuation) and forced flow fields showed that secondary flow structures dominated both flow fields, which is inevitably associated with total pressure loss. Contrary to the baseline case, the secondary flow structures in the forced case were established from the core flow stagnating on the lower surface of the duct close to the aerodynamic interface plane. High fidelity spectral analysis of the experimental results at the inlet’s exit plane showed that the baseline flow field was dominated by pressure fluctuations corresponding to a Strouhal number based on hydraulic diameter of 0.26. Not only did the two-dimensional tangential control jet improve the time-averaged pressure recovery at the inlet exit plane (13.3% at the lower half of the aerodynamic interface plane), it essentially eliminated the energy content of the distinct unsteady fluctuations which characterized the baseline flow field. This result has several implications for the design of a realistic engine inlet; furthermore, it depicts that a single non-intrusive static pressure measurement at the surface of the duct can detect flow separation.  相似文献   

2.
Flow in a simple swirl chamber with and without controlled inlet forcing   总被引:1,自引:0,他引:1  
Results are presented from a swirl chamber with and without controlled inlet forcing. The controlled inlet forcing is induced using arrays of vortex generators placed along one wall of the swirl chamber inlet duct. Flow visualization results are given, along with surveys of circumferential mean velocity, static pressure, and total pressure, at Reynolds numbers (based on inlet duct characteristics) as high as 8000. The controlled inlet forcing provides means to alter and control: (i) the spacing and number of Görtler vortices across the span of the swirl chamber, (ii) the amount of vortex development at a particular Reynolds number and circumferential location, (iii) the circumferential location and Reynolds number of initial Görtler vortex development, and (iv) the circumferential location and Reynolds number of Görtler vortex breakup into more chaotic flow.  相似文献   

3.
The S-shaped diffuser which connects the exit of the compressor to the inlet of the combustion chamber of the Allison 250 gas turbine has been investigated using the Shear-Stress Transport turbulence model (SST) and the commercial code ANSYS-CFX. The diffuser geometry includes an initial conical diffuser which smoothly transitions into a constant cross-section S-duct. The numerical model and setup were validated using both in-house processed experimental data and experimental data from the literature on a similar geometry. The stream-wise velocity profile was observed to flatten in the initial divergent section, and then the region of the flow with the highest velocity is pushed toward the outer surface of the first bend, with a secondary-flow in the plane of the cross-section. This distortion of the stream-wise velocity intensified when the inlet turbulence intensity was decreased or when the Reynolds number was increased. An increase of the Reynolds number also translated into higher static pressure recovery potential and lower wall friction coefficients. Six variations of the diffuser geometry were considered, all having the same total cross-sectional area ratio and centreline offset. The qualitative results were the same as those of the Allison 250 diffuser, but unlike the base geometry, all the considered variants showed separated-flow regions (and reversed-flow regions in some cases) of different sizes and at different locations. The performance indicators for the Allison 250 S-shaped diffuser were the highest overall. Most interestingly, the current duct geometry outperformed its variant with a cross-sectional area expansion extending over its entire length, which is the most common inlet duct configuration.  相似文献   

4.
Separated Flow and Buffeting Control   总被引:2,自引:0,他引:2  
In transonic flow conditions, the shock wave/turbulent boundary layer interaction and the flow separations on the upper wing surfaces of civil aircraft induce flow instabilities, ‘buffet’ and then structural vibrations, ‘buffeting’. Buffeting can greatly affect aerodynamic behavior. The buffeting phenomenon appears when the aircraft's Machnumber or angle of attack increases. This phenomenon limits the aircraft's flight envelope. The objectives of this study are to cancel out or decrease the aerodynamic instabilities (unsteady separation, movement of the shock position) due to this type of flow by using control systems. The following actuators can be used: ‘Vortex Generators’ situated upstream of the shock position, a ‘Bump’ located at the shock position, and a new moving part designed by ONERA, situated on the trailing edge of the wing, the ‘Trailing Edge Deflector’ or TED. It looks like an adjustable ‘Divergent Trailing Edge’. It is an active actuator and can take different deflections or be driven by dynamic movements up to 250 Hz. Tests were performed in transonic 2D flow with models well equipped with unsteady pressure transducers. For high lift coefficients, a selected static position of the ‘Trailing Edge Deflector’ increases the wing's aerodynamic performances and delays the onset of buffet. Furthermore, in 2D flow buffet conditions, the ‘Trailing Edge Deflector’, driven by a closed-loop active control using the measurements of the unsteady wall static pressures, can greatly reduce buffet. The aerodynamic performances are not improved to the same extent by the bump actuator. From our experience, there is no effect on buffet or separated flow because of the incorrect positioning of the bump. All that can be observed is a local improvement on the intensity of the shock wave when the bump is very precisely situated at the shock position. Vortex generators have a great impact on the separated flow. The separated flow instabilities are greatly reduced and buffet is totally controlled even for strong instabilities. The aerodynamic performances of the airfoil are also greatly improved.  相似文献   

5.
低雷诺数翼型蒙皮主动振动气动特性及流场结构数值研究   总被引:1,自引:0,他引:1  
刘强  刘周  白鹏  李锋 《力学学报》2016,48(2):269-277
针对低雷诺数(Re)翼型气动性能差的特点,文章通过对翼型柔性蒙皮施加主动振动的方法,提高翼型低Re下的气动特性,改善其流场结构.采用带预处理技术的Roe方法求解非定常可压缩Navier-Stokes方程,对NACA4415翼型低Re流动展开数值模拟.通过时均化和非定常方法对比柔性蒙皮固定和振动两种状态下的升阻力气动特性和层流分离流动结构.初步研究工作表明在低Re下柔性蒙皮采用合适的振幅和频率,时均化升阻力特性显著提高,分离泡结构由后缘层流分离泡转变为近似的经典长层流分离泡,分离点后移,分离区缩小.在此基础上,文章更加细致研究了柔性蒙皮两种状态下单周期内的层流分离结构及壁面压力系数分布非定常特性和演化规律.蒙皮固定状态下分离区前部流场结构和压力分布基本保持稳定,表现为近似定常分离,仅在后缘位置出现类似于卡门涡街的非定常流动现象.柔性蒙皮振动时从分离点附近开始便产生分离涡,并不断向下游移动、脱落,表现为非定常分离并出现大范围的压力脉动.蒙皮振动使流体更加靠近壁面运动,大尺度的层流分离现象得到有效抑制.   相似文献   

6.
鲍欢欢  谷正气  谭鹏 《实验力学》2014,29(4):460-466
汽车尾部湍流场是汽车压差阻力的主要来源,在HD-2汽车模型风洞中,首先使用测力天平和测压系统,对横摆角工况下汽车模型的气动六分力和纵对称截面48个测点的表面压力进行了测量,然后利用PIV测量技术对模型在横摆角分别为0°、15°的尾部湍流场进行了测量,获得该模型尾流场的速度场、涡量场和雷诺应力流场信息,通过计算得出尾流场区域空间相关系数和湍流积分尺度。结果表明:在横摆角工况下,汽车模型尾部涡流的结构呈现向上发展的趋势;尾流场拖拽涡的范围和强度的增大导致了模型气动力出现较大的增加;湍流积分尺度的变化表明,尾部涡流区的分离噪声与涡流分离位置有关,在汽车尾部造型设计中,要尽量推迟尾部涡流的分离。  相似文献   

7.
双燃式超燃发动机冷态内流场的数值研究   总被引:1,自引:0,他引:1  
研究了双燃式一体化通道(包含进气道、双燃式燃烧室和尾喷管)的冷态内流场特性.首次在激波风洞中对内流场进行纹影照相,用TVD格式求解三维全N-S方程对喷管和一体化通道进行分区数值模拟,并考察了几何参数对内流场的影响.结果表明对典型工况(h  相似文献   

8.
This paper investigates the possibility of shear wave propagation along the plane surface in the interface of two different types of fibre reinforced media. The upper layer is fibre reinforced and the lower half-space is taken inhomogeneous fibre reinforced. Dispersion equation and condition for maximum energy flow near the surface are obtained in compact form. The dispersion equation coincides with that of Love wave for uniform media. Effect of reinforcement and inhomogeneity on phase and group velocity has been depicted by means of graphs. It is observed that inhomogeneity and reinforcement decreases the phase velocity and presence of reinforcement deviate the group velocity.  相似文献   

9.
为了研究乘波体几何外形参数和飞行参数对前体/进气道一体化设计的影响,采用理论分析和数值模拟相结合的方法,以马赫数Ma=6和攻角α=0为设计状态、进气道总压恢复系数和前体阻力系数为目标函数,对乘波体前体/进气道进行了优化设计,并在此基础上研究了攻角、马赫数、前缘半径、前体宽度对气动参数的影响。结果表明:该乘波体前体/进气道构型具有良好的攻角特性,总压恢复系数比基准构型提高17.79%,阻力系数比基准构型降低78.5%,符合高超声速飞行器高升力、低阻力的要求,且非常适合小攻角高超声速巡航飞行;为了得到较高升阻比的前体,在前缘半径R≤2mm的范围内进行流场反设计时,可以将设计马赫数的取值比预期低一些。  相似文献   

10.
高压捕获翼构型亚跨超流动特性数值研究   总被引:1,自引:1,他引:0  
为研究高压捕获翼布局在亚跨超条件下的流动特性, 选取圆锥?圆台机体组合捕获翼概念构型, 在马赫数0.3 ~ 3速域范围内, 选取典型状态点, 采用数值模拟在 0°攻角条件下进行了计算和分析. 结果表明, 在整个速域范围内, 由于机体与捕获翼在对称面附近的垂向距离最小, 因此二者之间的气动干扰最为明显, 且沿展向逐渐减弱. 同时, 随马赫数增大, 机体与捕获翼间的流场结构明显不同, 具体表现为: 当Ma<0.5时, 未出现流动分离现象, 当Ma>0.5时, 机体后段开始出现明显的流动分离, 由于捕获翼与机体形成先收缩后扩张的等效通道, 捕获翼下表面和机体上表面的压力均先减小后增大; 进入跨声速速域后, 在捕获翼的影响下, 流动分离更加明显, 机体与捕获翼之间开始出现激波, 并且与分离区相互作用, 同时出现激波串, 捕获翼下表面产生明显的压力波动现象, Ma=1.5时, 通道内激波位置基本到达机体尾部, 分离区基本消失; 当Ma>2以后, 整个流场呈现以激波为主导的结构形式, 捕获翼下表面和机体上表面的压力分布逐渐趋于平缓.   相似文献   

11.
激波振荡是高超声速进气道不起动过程中常见的流动现象,会显著降低进气道气流捕获与压缩效率、产生剧烈的非定常气动力载荷而危害飞行器安全. 从激波振荡的控制出发,实验研究了前体转捩带位置的涡发生器对轴对称高超声速进气道激波振荡流动的影响. 分别在起动和激波振荡两种进气道流态下,选择无、0.5 mm与1 mm高度涡发生器工况进行对比研究. 并采用高速纹影与壁面动态测压同步记录非定常流动特征. 结果表明,1 mm高度内的涡发生器对起动状态的进气道主流流场结构、壁面压强分布影响不显著. 但对于激波振荡流动,涡发生器会明显缩小外压缩面分离区运动范围,缩短振荡周期,提升振荡周期内壁面压强的时均值. 涡发生器的影响程度随其高度的增大而增强,其中振荡周期从无涡发生器的4 ms缩短到1 mm高度涡发生器的3.13 ms. 此外,0.5 mm高度涡发生器会使得进气道内部测点的压强振荡幅值整体下降,相比无涡发生器工况的下降幅度可达23%. 流场结构与壁面压强信号的分析表明,涡流发生器主要通过其产生的流向涡影响激波振荡流动,包含流向涡对下游边界层的扰动以及流向涡与分离区的相互干扰.   相似文献   

12.
针对不同气体模型对高超声速飞行器喷流反作用控制系统(RCS)热喷干扰流场模拟的计算效率和准确性问题, 基于喷流燃气物理化学模型, 通过数值求解含化学反应源项的三维N-S方程, 建立了飞行器RCS热喷干扰流场数值模拟方法, 分别采用化学反应流、反应冻结流、二元异质流以及空气喷流四种气体模型开展了典型外形热喷干扰流场的数值模拟, 研究了不同气体模型对热喷干扰流场结构、飞行器气动力热特性的影响, 分析了不同马赫数、飞行高度下的变化规律. 研究表明: 化学反应流模型计算精度较高, 计算与风洞试验数据的吻合程度优于其他三种简化模型; 在本文的低空条件下, 采用简化模型进行热喷干扰流场数值模拟, 会低估分离区大小, 使飞行器气动力特性预测出现偏差, 同时也会低估表面热环境, 对防热系统设计不利, 随着马赫数增加, 简化模型对气动力热特性预估的误差进一步增大, 同时不同简化模型之间的差异也进一步增大; 飞行高度较高时, 模型之间的差异减小, 此时可采用简化模型进行计算以提高计算效率. 本文的研究结果可为飞行器热喷干扰流场数值模拟及喷流反作用控制系统设计提供参考.   相似文献   

13.
14.
Hybrid laminar flow control (HLFC) aims to reduce aircraft skin friction drag by controlling the boundary-layer characteristics through a combination of surface suction and surface profile shaping. Suction is applied through an array of microperforations in the surface; and, to enable HLFC design criteria to be established with confidence, a full understanding of how these suction perforations affect the boundary layer is required. The objective of this paper is to predict the flow field induced by surface suction through single and multiple rows of microperforations, at transonic cruise conditions. A broad range of cases are studied for a variety of geometric and flow configurations by solving the compressible, laminar, Navier-Stokes equations. The geometric parameters considered are perforation diameter, inclination to the surface, and perforation duct profile. The flow parameters consist of the boundary-layer displacement thickness and suction mass flow rate through the hole. From the predictions and analyses of the results, a wide variety of flow field patterns and features are observed; including longitudinal vortices, streamline curvature, large cross-flow velocities, inherently unstable velocity profiles, and a recirculation region at the perforation entrance. The perforation inlet shape is found to have a minimal effect on the induced flow field, but the level of streamwise vorticity is increased for inclined perforations. The size and shape of the sucked stream tube, which is currently used to predict the critical suction velocity, also is determined. For multiple rows of perforations, the flow field characteristics are shown to be influenced by significant interhole effects. The mass flow rate characteristics of microperforations are found to be insensitive to the ratio of hole diameter to boundary-layer displacement thickness. Also, conical bore holes are shown to provide substantial static pressure recovery due to diffusion effects.  相似文献   

15.
Results are presented of experiments conducted in a two-dimensional duct carrying a supersonic flow of condensing steam. The measurements comprised static pressure readings along the profiled surfaces of the duct and ‘fog’ droplet sizing using a light attenuation technique. Three sets of results for dry supercooled and nucleating steam flows are presented, are are compared with the predictions of a two-dimensional numerical calculation method.  相似文献   

16.
A circular jet entering an open-ended concentric circular chamber can rotate or precess about the jet axis for certain flow conditions and chamber configurations. Active flow control of a precessing jet provides the ability to influence the flow field inside the chamber and the resulting flow after the chamber exit. Twelve micro-jets surrounding the jet at the chamber inlet are used as actuation. At the chamber exit, four pressure probes and three-component velocity measurement using stereo particle image velocimetry (stereo-PIV) is used to monitor the flow. A phase plane method using signals from the pressure sensors is developed to monitor the location of the jet high-velocity region in real-time. Phase-locked stereo-PIV, triggered by the micro-jet actuation signal, is used to investigate the flow field and validate the pressure phase plane results. The effectiveness of the micro-jet actuation and the validation of the pressure phase plane measurements demonstrate actuation and the sensing needed for future closed-loop control of the precessing jet.  相似文献   

17.
采用相同拓扑结构和相近网格质量的4套网格和5种湍流模型,对全附体Suboff潜艇粘性流场进行RANS模拟,分析了网格密度、节点空间分布规律和湍流模型对计算精度的影响,详细校验了其力积分量、速度场量和涡量特征。结果表明:网格密度最大的G4网格(140万)计算精度最高,总阻力较实验值误差为0.723%,其采用SST湍流模型时最优。计算得到的压力系数和剪切应力系数分布均与实验值吻合很好;桨盘面速度等值线分布计算精度与文献相当,轴向相对速度0.9以上的计算半径稍大于实验值,其余半径与实验吻合较好;桨盘面上0.25倍半径处速度分量沿周向分布计算精度较文献高,轴向分量与实验值吻合较好,径向分量峰值稍小于实验值,但峰值所处周向位置与实验值一致。成功捕捉到了附体端面绕流诱导对旋涡、附体叶根截面下游处项链形涡对、尾翼端面尾缘上方附着涡蹄、附体马蹄涡系、尾翼截面通道流体挤压作用诱导涡以及桨盘面涡量汇集的潜艇涡量场特征,且围壳端面绕流诱导对旋涡沿流动方向持续稳定,不影响桨盘面涡量场,均与文献中由大涡模拟模拟得到的定性结论一致。研究表明,在网格密度较大、节点分布合理、网格质量较高、湍流模型选取适当和壁面函数使用有效的条件下,RANS模拟潜艇粘性流场的场量和涡量特征同样具有很高的计算精度,能够在工程应用中有力支撑新型艇型设计与性能分析。  相似文献   

18.
An immiscible liquid–liquid multiphase flow in a cross‐junction microchannel was numerically studied using the lattice Boltzmann method. An improved, immiscible lattice BGK model was proposed by introducing surface tension force based on the continuum surface force (CSF) method. Recoloring step was replaced by the anti‐diffusion scheme in the mixed region to reduce the side‐effect and control the thickness of the interface. The present method was tested by the simulation of a static bubble. Laplace's law and spurious velocities were examined. The results show that our model is more advantageous for simulations of immiscible fluids than the existing immiscible lattice BGK models. Computational results of multiphase flow in a cross‐junction microchannel were obtained and analyzed based on dimensionless numbers. It is found that the flow pattern is decided mostly by the capillary number at a small inlet flux. However, at the same capillary number, a large inlet flux will lead to much smaller droplet generation. For this case, the flow is determined by both the capillary number and the Weber number. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Measurements of both the velocity and turbulence-intensity distributions above an ice-layer surface along flow direction have been performed to clarify the ice-layer transition phenomena observed in a rectangular duct. The test duct which has a lower cooled wall kept less than the freezing temperature of water with cross-sectional dimension of 50 mm by 19 mm was used in the present measurements. The velocity and turbulence-intensity distributions in the test duct were measured using Laser Doppler Velocimeter set up on the two-dimensional traversing table. The freezing experiments were carried out under the condition of uniform water-flow rate even after the ice layer has developed in the test duct. It was found that inlet water flow tended to be laminarized under an influence of developing ice layer, and that onset of the ice-layer transition phenomena might be closely related to an increase in turbulence intensity in the water flow above the developing ice-layer surface.  相似文献   

20.
A numerical simulation based on the Large eddy simulation method is carried out on the near wake flow behind a 25° slant angle Ahmed body to analyze and establish a new method to control the near wake flow. An active flow control using a new unsteady jet derived from the traditional synthetic jet is applied to reduce the aerodynamic drag. The control devices are distributed along the separation edges on the rear part of the body. Their effects on the near wake and the rear body by influencing the flow topology and the static pressure distribution are examined respectively. The control frequency of the jet as the key forcing parameter is taken into consideration as well. The different actuation set-ups lead to a max drag reduction of up to 13.6%, which demonstrates a good correlation with the static pressure distribution at the rear end of the body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号