首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper describes receptivity measurements in a pre-transitional boundary layer flowing over either a rigid or a compliant surface. Fluctuating velocities and frequency spectra were determined on one rigid and nine compliant surfaces. The results showed that the near wall receptivity grows linearly with Reθ. An empirical correlation of the gain frequency spectrum for a rigid wall was also established. For the compliant surfaces, the near wall gain is increased markedly near the leading edge of the plate due to the amplification of high and mid-frequencies. These frequencies are dissipated though as the flow progresses over the compliant surface such that the receptivity is lower on all the compliant surfaces than on the rigid surface at the trailing edge. An empirical correlation for the ratio of the gains on compliant and rigid surfaces in terms of the compliant surface coefficient ζ2/CSL2 and Reθ was established. This correlation indicates that compliant surfaces can suppress receptivity by up to 25% for a Reθ = 400.  相似文献   

2.
Understanding how to decrease the friction drag exerted by a fluid on a solid surface is becoming increasingly important to address key societal challenges, such as decreasing the carbon footprint of transport. Well-established techniques are not yet available for friction drag reduction. Direct numerical simulation results obtained by Józsa et al. (2019) previously indicated that a passive compliant wall can decrease friction drag by sustaining the drag reduction mechanism of an active control strategy. The proposed compliant wall is driven by wall shear stress fluctuations and responds with streamwise wall velocity fluctuations. The present study aims to clarify the underlying physical mechanism enabling the drag reduction of these active and passive control techniques. Analysis of turbulence statistics and flow fields reveals that both compliant wall and active control amplify streamwise velocity streaks in the viscous sublayer. By doing so, these control methods counteract dominant spanwise vorticity fluctuations in the near-wall region. The lowered vorticity fluctuations lead to an overall weakening of vortical structures which then mitigates momentum transfer and results in lower friction drag. These results might underpin the further development and practical implementation of these control strategies.  相似文献   

3.
Asymptotic analysis of boundary layer separation in the limit of large Reynolds number Re→∞ has shown that in a number of cases which are of importance from a practical point of view solutions of the resulting interaction equations describing two-dimensional (2-D) steady flows exist up to a limiting value Γc of the relevant controlling parameter Γ only while two branches of solutions exist in a regime Γ<Γc. The present study aims at a better understanding of near critical flows |Γ-Γc|→0 and in particular the changes of the flow behaviour associated with the passage of Γ through Γc.  相似文献   

4.
In a previous paper[1], a method has been developed to study the stability characteristics of laminar boundary layers over compliant walls. In this paper, the effect of double layered compliant wall and Kramer type compliant wall on delaying the transition is investigated, and it is shown that there does exist the possibility to delay the transition by applying such compliant walls. The project supported by the National Natural Science Foundation of China.  相似文献   

5.
6.
7.
Active and passive control of flow around a circular cylinder, at transitional Reynolds numbers was investigated experimentally by measuring cylinder surface pressures and wake velocity profiles. Two- and three-dimensional passive boundary layer tripping was considered and periodic active control using piezo-fluidic actuators was introduced from a two-dimensional slot that was nearly tangential to the cylinder surface. The slot location was varied circumferentially by rotating the cylinder and this facilitated either upstream- or downstream-directed actuation using sinusoidal or modulated wave-forms. Separation was controlled by two distinct methods, namely: by forcing laminar-turbulent transition when applied at relatively small angles (30–60°) from the forward stagnation point; and by directly forcing the separated shear-layer at larger angles. In the latter case, actuation produced the largest load changes when it was introduced at approximately 90° from the forward stagnation point. When the forcing frequency was close to the natural vortex-shedding frequency, the two frequencies “locked-in” creating clear and persistent structures. These were examined and categorized. The “lock-in” effect lowered the base pressure and increased the form-drag whereas delaying separation from the cylinder did the opposite.  相似文献   

8.
The effect of tube diameter (d) on Preston tube calibration curves for the measurement of wall shear stress (τw) in a zero pressure gradient turbulent boundary layer has been investigated. Five different outside diameter tubes of 1.46, 1.82, 3.23, 4.76 and 5.54 mm, corresponding to (d/δ) of 0.022, 0.027, 0.048, 0.071 and 0.082 were used to measure τw at Reynolds numbers based on momentum thickness (Rθ) of 2800–4100. The calibration curves of Patel (V.C. Patel, J. Fluid Mech. 23 (part I) (1965) 185–208) and Bechert (D.W. Bechert, AIAA J. 34 (1) (1995) 205–206) are both dependent on the tube diameter. The maximum difference in the τw measurements from the different tubes using Patel's calibration is about 8%, while Bechert's calibration gives a maximum difference of approximately 18%.  相似文献   

9.
为了得到壁面温度在不同来流速度、不同湍流强度条件下对边界层转捩与减阻的影响规律,本文采用Transitionk-kl-ω模型对低来流速度下无压力梯度的光滑平板进行了数值模拟。结果表明,随着来流速度的升高,壁温升高所起到的减阻效果更好,即高来流速度对壁面温度更为敏感。当来流处于中高湍流强度下时,壁温升高能起到推迟转捩的作用,且随着湍流强度的升高,转捩推迟的效果越好,但减阻效果正好相反;当来流处于低湍流强度下时,壁温升高会使得转捩提前发生。壁温升高抑制了边界层内流体的脉动程度,使得层流的稳态不易被破坏,流动更加稳定;同时,壁温升高使得边界层内流体的速度梯度减小,从而降低了壁面摩擦系数,故壁温升高能起到推迟边界层转捩与减阻的作用。  相似文献   

10.
11.
基于近壁定常剪切应力假设,提出了一种新的适用于浸入边界法的大涡模拟紊流壁面模型。通过引入壁面滑移速度,修正了线性速度剖面计算得到的壁面剪切应力,使之满足Werner-Wengle模型。将其应用于平板紊流和高Re数圆管紊流的数值模拟,对比采用和不采用壁面模型的结果得知,采用此模型的速度剖面与实验值吻合良好,验证了此模型的有效性。研究了不同欧拉/拉格朗日网格相对位置对结果的影响,证明了此模型具有较好的鲁棒性,以及可根据局部流动状态和网格精度自动开闭的特点。  相似文献   

12.
The problem of steady mixed convection boundary layer flow over a vertical impermeable flat plate in a porous medium saturated with water at 4°C (maximum density) when the temperature of the plate varies as x m and the velocity outside boundary layer varies as x 2 m , where x measures the distance from the leading edge of the plate and m is a constant is studied. Both cases of the assisting and the opposing flows are considered. The plate is aligned parallel to a free stream velocity U oriented in the upward or downward direction, while the ambient temperature is T = T m (temperature at maximum density). The mathematical models for this problem are formulated, analyzed and simplified, and further transformed into non-dimensional form using non-dimensional variables. Next, the system of governing partial differential equations is transformed into a system of ordinary differential equations using the similarity variables. The resulting system of ordinary differential equations is solved numerically using a finite-difference method known as the Keller-box scheme. Numerical results for the non-dimensional skin friction or shear stress, wall heat transfer, as well as the temperature profiles are obtained and discussed for different values of the mixed convection parameter λ and the power index m. All the numerical solutions are presented in the form of tables and figures. The results show that solutions are possible for large values of λ and m for the case of assisting flow. Dual solutions occurred for the case of opposing flow with limited admissible values of λ and m. In addition, separation of boundary layers occurred for opposing flow, and separation is delayed for the case of water at 4°C (maximum density) compared to water at normal temperature.  相似文献   

13.
在强冲击波荷载作用下门框墙转角处会产生明显的应力集中,影响门框墙体系甚至整个防护结构的安全。为解决该问题,提出在迎爆面门框墙和衬砌结合部位设置薄弱层的构造方法,从而减小冲击荷载引起的过大的拉应力。运用考虑了剪切变形的悬臂梁理论分析表明,梁端部约束刚度的变化可以影响结构的破坏形态以及结构的内力分布,降低端部的约束刚度可以有效降低端部区域的内力峰值,延缓结构发生破坏的时间。利用有限元模拟的方法,分析了在出入口门框墙位置设置薄弱层对门框墙动力响应和破坏规律的影响。分析结果表明,设置薄弱层可以有效降低门框墙转角处的应力,降低门框墙结构破坏的风险,进而提高门框墙的抗力水平。  相似文献   

14.
The Eckert number phenomenon was investigated theoretically by Geropp in 1969 and describes a reversal in heat transfer from a moving wall at an Eckert number Ec ≈ 1. In this report the Eckert number phenomenon is confirmed experimentally for the first time. For that purpose the heat transfer from a heated, vertically rotating cylinder in a crossflow was investigated. In order to perform the experiments in a range where the predicted phenomenon occurs, extreme rotational speeds were necessary. A heating concept had to be developed which allowed an input of heating power independent of the speed and which therefore had to be contact-free. The results show, among other things, that the temperature difference between the wall and the surrounding fluid has a significant effect on the predicted reversal of heat transfer at the wall. Moreover, maximum heat transfer occurs at an Eckert number Ec ≈ 0.3, which is of great importance for the cooling of hot surfaces in a gas-flow.  相似文献   

15.
Shock formation due to flow compressibility and its interaction with boundary layers has adverse effects on aerodynamic characteristics, such as drag increase and flow separation. The objective of this paper is to appraise the prac-ticability of weakening shock waves and, hence, reducing the wave drag in transonic flight regime using a two-dimensional jagged wall and thereby to gain an appropriate jagged wall shape for future empirical study. Different shapes of the jagged wall, including rectangular, circular, and triangular shapes, were employed. The numerical method was validated by experimental and numerical studies involving transonic flow over the NACA0012 airfoil, and the results presented here closely match previous experimental and numerical results. The impact of parameters, including shape and the length-to-spacing ratio of a jagged wall, was studied on aerodynamic forces and flow field. The results revealed that applying a jagged wall method on the upper surface of an airfoil changes the shock structure significantly and disinte-grates it, which in turn leads to a decrease in wave drag. It was also found that the maximum drag coefficient decrease of around 17%occurs with a triangular shape, while the max-imum increase in aerodynamic efficiency (lift-to-drag ratio) of around 10%happens with a rectangular shape at an angle of attack of 2.26?.  相似文献   

16.
The present paper evaluates two unsteady transition modelling approaches: the prescribed unsteady intermittency method PUIM, developed at Cambridge University and the dynamic unsteady intermittency method developed at Ghent University. The methods are validated against experimental data for the N3-60 steam turbine stator profile for steady and for unsteady inlet flow conditions. The characteristic features of the test case are moderately high Reynolds number and high inlet turbulence intensity, which causes bypass transition. The tested models rely both on the intermittency parameter and are unsteady approaches. In the prescribed method, the time-dependent intermittency distribution is obtained from integral relations. In the dynamic method, the intermittency distribution follows from time-dependent differential equations. For unsteady computations, self-similar wake profiles are prescribed at the inlet of the computational domain. Joint validation of the prescribed and the dynamic unsteady intermittency models against experimental data shows that both methods are able to reproduce the global features of the periodical evolution of the boundary layer under the influence of a periodically impinging wake. The overall quality of the dynamic method is better than that of the prescribed method.  相似文献   

17.
This work presents the main results of a simple closed-loop active control for an electrodynamic shaker in order to generate acceleration Power Spectral Densities (PSD) according to prescribed Standards used in environmental vibration tests. The main idea is to start generating acceleration pseudo-signals obeying the prescribed Power Spectral Density and then to acquire acceleration data from the electrodynamic shaker’s table behaviour. So the Power Spectral Density of the acquired acceleration is computed and compared with the required PSD and then the time-varying pseudo-acceleration is updated to reflect this corrected PSD. It was noticed that for piecewise narrow bands frequencies, the electrodynamic shaker acceleration behaves near linearly, both in frequency and voltage, for the input signals. A code in AgilentVee 7.5 software to acquire, send and process signals for the active control in a closed-loop scheme was developed. The used A/D D/A hardware was a single PC sound card with specific characteristics. The control could be accomplished sending and acquiring at the same time with a range of input/output of ±1.5 V with 16 bits of resolution, at 48 kHz and assistance of an external sound amplifier.  相似文献   

18.
Active feedback control for the onset of Rayleigh-Bénard Convection in temperature-dependent-viscosity liquids is investigated. In this paper, three major problems are addressed: (1) The results of Tang-Bau control are improved by considering the effects of temperature-dependent viscosity; (2) A more efficient two-plate control strategy is presented. A phenomenon of coalescence of the unstable modes is observed as the controller gain is large enough; (3) A simple way to estimate the critical Rayleigh number under the effects of temperature-dependent viscosity is described. Numerical results show that the effects of temperature-dependent viscosity on the critical Rayleigh number should be taken into account in some cases and the onset of Rayleigh-Bénard convection can be effectively delayed or advanced by the active feedback control strategies studied here.  相似文献   

19.
A new nonlinear integral resonant controller (NIRC) is introduced in this paper to suppress vibration in nonlinear oscillatory smart structures. The NIRC consists of a first-order resonant integrator that provides additional damping in a closed-loop system response to reduce high-amplitude nonlinear vibration around the fundamental reso-nance frequency. The method of multiple scales is used to obtain an approximate solution for the closed-loop system. Then closed-loop system stability is investigated using the resulting modulation equation. Finally, the effects of different control system parameters are illustrated and an approximate solution response is verified via numerical simulation results. The advantages and disadvantages of the proposed controller are presented and extensively discussed in the results. The controlled system via the NIRC shows no high-amplitude peaks in the neighboring frequencies of the resonant mode, unlike conventional second-order compensation methods. This makes the NIRC controlled system robust to excitation frequency variations.  相似文献   

20.
In this paper, we consider the control of laminar, incompressible boundary layer for the ionized air flow over a flat plate and wedges through the application of an electric field. Group theory is used to find equivalence transformations of the resulting boundary layer equations. These transformations in turn reveal forms of the electric field function which lead to reductions of the equations via similarity variables. Differences in boundary layer thickness growth and velocity profiles as well as wall shear stresses are shown for the specific choices of the electric field function. The effects of suction and blowing type of boundary conditions are also demonstrated. The applied electric fields lead to a thinning of boundary layer thickness and an increase in wall shear stress. They are also shown to stabilize the velocity component profiles and suppress flow separation in reentrant corners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号