首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
A series of polyoxometalates (POMs) that incorporate the highest‐nuclearity Ln clusters that have been observed in such structures to date (Ln26 , Ln=La and Ce) are described, which exhibit giant multishell configurations (Ln⊂W6⊂Ln26⊂W100). Their structures are remarkably different from known giant POMs that feature multiple Ln ions. In particular, the incorporated Ln–O clusters with a nuclearity of 26 are significantly larger than known high‐nuclearity (≤10) Ln–O clusters in POM chemistry. Furthermore, they also contain the largest number of La and Ce centers for any POM reported to date and represent a new kind of rare giant POMs with more than 100 W atoms. Interestingly, the La26‐containing POM can undergo a single‐crystal to single‐crystal structural transformation in the presence of various transition‐metal ions, such as Cu2+, Co2+, and Ni2+, from an inorganic molecular nanocluster into an inorganic–organic hybrid extended framework that is built from POM building blocks with even higher‐nuclearity La28 clusters bridged by transition‐metal complexes.  相似文献   

16.
17.
18.
19.
As an emerging member of endohedral fullerenes, metal cyanide clusterfullerenes (CYCF) are unique in terms of the encapsulation of a monometallic cluster. To date the reported carbon cages of CYCFs are limited to C82 and C76, and little is known about the chemical reactivity of CYCFs. Herein, two isomers of the first C84‐based CYCFs, YCN@C84, were isolated as trifluoromethyl derivatives, including YCN@C84(23)(CF3)18 and three isomers of YCN@C84(13)(CF3)16, which are based on a unique chiral C 2‐C84(13) cage. As a common feature of the CF3 addition patterns, the YCN@C84(CF3)16/18 compounds are stabilized by the formation of isolated C=C bonds and benzenoid rings on the carbon cages. The interplay between the endohedral YCN cluster and the exhohedral CF3 addends was unveiled according to single‐crystal X‐ray diffraction studies, thus offering new insight into the chemical reactivity of CYCFs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号