首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
以甲基汞离子为模板,8-巯基喹啉为荧光单体,4-乙烯基吡啶为功能单体,乙二醇二甲基丙烯酸酯为交联剂,偶氮二异丁腈为引发剂,在二甲基亚砜溶剂中,以聚偏氟乙烯(PVDF)膜为支撑介质,65℃热引发聚合得到甲基汞离子荧光印迹膜。该荧光印迹膜对甲基汞离子表现出良好的选择性,最佳吸附pH值为7.0,检出限为3.5×10-7mol/L。将其作为吸附材料,应用于河水中甲基汞离子的分离和富集,结果表明,该传感器对甲基汞离子具有良好的选择性和特异性吸附,回收率达93%~104%。  相似文献   

4.
Pseudouridine (Ψ) is an important urinary cancer biomarker, especially in human colorectal cancer (CRC). Disclosed herein is the first Ψ molecularly imprinted polymer (Ψ‐MIP) material obtained from tailor‐engineered functional monomers. The resulting MIP imprint exhibits a remarkable imprinting factor greater than 70. It is successfully used for the selective recognition of Ψ in spiked human urine. This selective functionalized material opens the route to the development of inexpensive disposable chemosensors for noninvasive CRC diagnosis and prognosis.  相似文献   

5.
6.
The biological recognition of complex‐type N ‐glycans is part of many key physiological and pathological events. Despite their importance, the structural characterization of these events remains unsolved. The inherent flexibility of N ‐glycans hampers crystallization and the chemical equivalence of individual branches precludes their NMR characterization. By using a chemoenzymatically synthesized tetra‐antennary N ‐glycan conjugated to a lanthanide binding tag, the NMR signals under paramagnetic conditions discriminated all four N ‐acetyl lactosamine antennae with unprecedented resolution. The NMR data revealed the conformation of the N ‐glycan and permitted for the first time the direct identification of individual branches involved in the recognition by two N ‐acetyllactosamine‐binding lectins, Datura stramonium seed lectin (DSL) and Ricinus Communis agglutinin (RCA120).  相似文献   

7.
A highly selective molecularly imprinted polymer electrochemical sensor for In3+ detection was proposed. In3+ ion was chelated with alizarin red S to form a complex In‐ARS. The complex was used as the template molecule to prepare a molecularly imprinted polymer (MIP) based sensor. The selectivity of the sensor was improved significantly due to the three‐dimensional specific structure of the complex, and the selective complexation of ligands for metal ions. Moreover, the sensitivity of the proposed sensor was improved by recording the reductive current of ligand in complex. This technique was highly sensitive for quantitative analysis of In3+ in the concentrations ranged from 1×10?8 mol/L to 2.5×10?7 mol/L with a detection limit of 4.7×10?9 mol/L. The proposed sensor has been successfully used in detecting In3+ in real samples.  相似文献   

8.
9.
10.
《Analytical letters》2012,45(2):275-286
Abstract

A type of testosterone‐imprinted polymer film grafted from porous silica was prepared by covalently binding azo‐initiators and then photo‐grafting. Elemental analysis and infrared (IR) spectroscopy attested the polymer formation. The material could be polymerized within 10–60 min with reproducible grafting kinetics, controllable film thickness, and obviously specific recognition ability to testosterone with the imprinting factor of 1.52. Due to its uniform size, spherical shape, controllable film thickness, and accessible sites near or at the surface, this polymer could serve as a sensing element, solid‐phase extraction material, or chromatographic stationary phase to selectively recognize or separate testosterone.  相似文献   

11.
12.
The surface molecular imprinting technique has been proposed as a prospective strategy for template molecule recognition and separation by devising the recognition sites on the surface of imprinted materials. The purpose of this study was to establish a novel drug delivery system which was developed by surface molecular imprinting method using β-cyclodextrin (β-CD)-grafted chitosan (CS) (CS-g-β-CD) microspheres as matrix and sinomenine hydrochloride (SM) as the template molecule. By adjusting the amount of functional monomer and cross-linking agent, we got the more excellent adsorption of CS-g-β-CD molecularly imprinted polymers (MIPs-CS-g-β-CD). When the amount of functional monomer was 6 mmol and cross-linking agent was 20 mmol, the maximum binding capacity of MIPs and non-imprinted polymers (NIPs) was 55.9 mg/g and 37.2 mg/g, respectively. The results indicated that the recognition of SM with MIPs was superior to NIPs. The adsorption isotherms of MIPs-CS-g-β-CD indicated that the adsorption behavior fitted better to the Langmuir model, which showed that the adsorption process of polymer was monomolecular layer. In in vitro drug release studies, the accumulative release amount of MIPs-CS-g-β-CD was up to 78% within 24 h. MIPs exhibited an excellent controlled SM release profile without burst release and the mechanism of SM release was shown to conform to non-Fick diffusion. Therefore, MIPs-CS-g-β-CD were successfully applied to extraction of SM and used as the materials for drug delivery system.  相似文献   

13.
14.
药物头孢氨苄分子模板聚合物水中结合性质的研究   总被引:15,自引:0,他引:15  
郭洪声  何锡文 《分析化学》2000,28(10):1214-1219
采用分子模板技术合成了以头孢氨苄为模板分子以三氟甲基丙烯酸和4-乙烯基吡啶同时为功能单体的分子模板聚合物。将得到的棒状聚合物研磨过筛后,运用平衡结合实验研究了头孢氨苄分子模板聚合物的结合性质,Scatchard分析表明,在所研究的浓度范围内,在聚合物中形成了两类不同的结合位点。头孢氨苄分子模板聚合物与其化学组成相同的非模板聚合物相比,有很高的结合容量。底物选择性实验表明,与其它结构相似的药物相比,  相似文献   

15.
16.
17.
18.
《Electroanalysis》2018,30(2):320-327
A novel molecularly imprinted polymer (MIP) photoelectrochemical sensor was fabricated for the highly sensitive and selective detection of triclosan. The MIP photoelectrochemical sensor was fabricated using graphite‐like carbon nitride (g‐C3N4) and gold nanoparticles (AuNPs) as photoelectric materials. The MIP/g‐C3N4‐AuNPs sensor used photocurrent as the detection signal and was triggered by ultraviolet light (UV‐Light 365 nm). g‐C3N4‐AuNPs was immobilized on indium tin oxide electrodes to produce the photoelectrochemically responsive electrode of the MIP/g‐C3N4‐AuNPs sensor. A MIP layer of poly‐o‐phenylenediamine was electropolymerized on the g‐C3N4‐AuNPs‐modified electrode to act as the recognition element of the MIP/g‐C3N4‐AuNPs sensor and to enable the selective adsorption of triclosan to the sensor through specific binding. Under optimal experimental conditions, the designed MIP/g‐C3N4‐AuNPs sensor presented high sensitivity for triclosan with a linear range of 2×10−12 to 8×10−10 M and a limit of detection of 6.01×10−13 M. Moreover, the MIP/g‐C3N4‐AuNPs sensor showed excellent selectivity. The sensor had been successfully applied in the analysis of toothpaste samples.  相似文献   

19.
分子印迹是制备对特定分子具有专一性结合能力的聚合物的技术,所制备的聚合物被称为分子印迹聚合物(Molecularly imprinted polymers,MIPs),此类聚合物在分离提纯、模拟酶和传感器等方面均显示出广阔的应用前景,迄今,小分子化合物的印迹技术已经十分成熟。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号