首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flow around a circular cylinder undergoing sinusoidal oscillating movement in still water is investigated by phase-locked PIV measurements. The pattern and development of large-scale vortex structures in the flow are studied from the velocity vectors and vorticity contours obtained at eight successive phases of an oscillating cycle. Experiments are performed at three Keulegan–Carpenter numbers; KC=12, 6.28 and 4.25. Results at KC=12 reveal the mechanism of vortex formation and the development of the shed vortices into a vortex street at a lateral direction to the line of cylinder movement. The role of a biased flow stream and the length of the cylinder stroke in the formation of the vortex street are discussed. At the lower KC numbers, a symmetric pair of vortices is found attached to the leeward face of the cylinder. The vortex pair exhibits an increasing degree of asymmetry when KC increases from 4.25 to 6.28. An explanation in terms of the length of the cylinder strokes and the degree of flow asymmetry is offered for the transition of flow regimes from a vortex pair to a vortex street. The present results are compared with the observations made in previous experimental and numerical studies in the literature.  相似文献   

2.
A nonlinear time-domain simulation model for predicting two-dimensional vortex-induced vibration (VIV) of a flexibly mounted circular cylinder in planar and oscillatory flow is presented. This model is based on the utilization of van der Pol wake oscillators, being unconventional since wake oscillators have typically been applied to steady flow VIV predictions. The time-varying relative flow–cylinder velocities and accelerations are accounted for in deriving the coupled hydrodynamic lift, drag and inertia forces leading to the cylinder cross-flow and in-line oscillations. The system fluid–structure interaction equations explicitly contain the time-dependent and hybrid trigonometric terms. Depending on the Keulegan–Carpenter number (KC) incorporating the flow maximum velocity and excitation frequency, the model calibration is performed, entailing a set of empirical coefficients and expressions as a function of KC and mass ratio. Parametric investigations in cases of varying KC, reduced flow velocity, cylinder-to-flow frequency ratio and mass ratio are carried out, capturing some qualitative features of oscillatory flow VIV and exploring the effects of system parameters on response prediction characteristics. The model dependence of hydrodynamic coefficients on the Reynolds number is studied. Discrepancies and limitations versus advantages of the present model with different feasible solution scenarios are illuminated to inform the implementation of wake oscillators as a computationally efficient prediction model for VIV in oscillatory flows.  相似文献   

3.
IntroductionTheunsteadyflowpastacircularcylinderhasreceivedagreatdealofattentionowingmainlytoitstheoreticalandpracticalsignificance .Theflowgeneratedbytheoscillationofthecylinder,oroscillatingflowsaroundthecylinder,canbecharacterizedbytwoparameters.OneistheKeulegan_Carpenternumber,definedasKC =UmT/D ,andtheotheristheReynoldsnumberRe=UmD/ν,orafrequencyparameter,definedasβ=D2 / (νT) =Re/KC) ,whichisoftenusedtoreplacetheReynoldsnumberasthesecondparameter.Here,Umisthemaximumvelocityofth…  相似文献   

4.
Particle-laden water flows past a circular cylinder were numerically investigated. The discrete vortex method (DVM) was employed to evaluate the unsteady water flow fields and a Lagrangian approach was applied for tracking individual solid particles. A dispersion function was defined to represent the dispersion scale of the particle. The wake vortex patterns, the distributions and the time series of dispersion functions of particles with different Stokes numbers were obtained. Numerical results show that the particle distribution in the wake of the circular cylinder is closely related to the particle's Stokes number and the structure of wake vortices: (1) the intermediate sized particles with Stokes numbers, St, of 0.25, 1.0 and 4.0 can not enter the vortex cores and concentrate near the peripheries of the vortex structures, (2) in the circular cylinder wake, the dispersion intensity of particles decreases as St is increased from 0.25 to 4.0.  相似文献   

5.
A mixed convection flow of an optically dense viscous incompressible fluid along a horizontal circular cylinder has been studied with the effect of radiation when the surface temperature is uniform. Using appropriate transformations, the boundary layer equations governing the flow are reduced to local nonsimilarity form. Solutions of the governing equations are obtained employing the implicit finite difference method. Effects of varying the pertinent parameters, such as, the Planck number, R w the surface temperature parameter, θw and the buoyancy parameter, α on the local skin-friction and local heat transfer coefficients are shown graphically as well as in tabular form against the curvature parameter ξ, while taking Prandtl number Pr = 1.0. It is found that an increase of R dw or α leads to increases in the values of the local skin-friction and the local rate of heat transfer coefficients. At the stagnation point asymptotic solutions for large value of α are also obtained and the effect of the other pertinent parameters on the formation of the flow separation are studied. Received on 28 July 1998  相似文献   

6.
The viscous dissipation effect on forced convection in a porous saturated circular tube with an isoflux wall is investigated on the basis of the Brinkman flow model. For the thermally developing region, a numerical study is reported while a perturbation analysis is presented to find expressions for the temperature profile and the Nusselt number for the fully developed region. The fully developed Nusselt number found by numerical solution for the developing region is compared with that of asymptotic analysis and a good degree of agreement is observed.  相似文献   

7.
ABSTRACT

In this article, we investigate the abnormal settling of two-disk systems and elliptical shaped particles in infinite two-dimensional channels filled with an incompressible viscous fluid. We apply a distributed Lagrange multiplier/fictitious domain method (DLM/FDM) for the direct numerical simulation of these particulate flows. Due to the wall effect, the two-disk systems can form chains which settle stably instead of having the particles moving apart. Also, sedimentation with the long axis moving to vertical positions in the middle of the infinite channel has been observed for the elliptic shaped particles. The critical Reynolds number for having such an abnormal settling behaviour decreases as the width of the channel increases.  相似文献   

8.
A numerical investigation of the mixed convection heat transfer from vertical helically coiled tubes in a cylindrical shell at various Reynolds and Rayleigh numbers, various coil‐to‐tube diameter ratios and non‐dimensional coil pitches was carried out. The particular difference in this study compared with other similar studies is the boundary conditions for the helical coil. Most studies focus on constant wall temperature or constant heat flux, whereas in this study it was a fluid‐to‐fluid heat exchanger. The purpose of this article is to assess the influence of the tube diameter, coil pitch and shell‐side mass flow rate on shell‐side heat transfer coefficient of the heat exchanger. Different characteristic lengths were used in the Nusselt number calculations to determine which length best fits the data and finally it has been shown that the normalized length of the shell‐side of the heat exchanger reasonably demonstrates the desired relation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Fluctuating wind pressures acting on bluff bodies are influenced by approaching turbulence and signature (body-induced) turbulence. For a circular cylinder, the signature turbulence is closely related to the formation of Karman vortex shedding. In this paper, proper orthogonal decomposition (POD) and spectral proper transformation techniques (SPT) are applied to the pressure fluctuations acting on a circular cylinder. The physical relationships between the decomposed modes and vortex shedding are discussed to identify the dominant aerodynamic behavior (lift or drag) and to evaluate its contribution to overall behavior. The effect of Reynolds number (Re) is also addressed. It is found that the application of POD and SPT can separate the along-wind and across-wind effects on the cylinder model in both subcritical and supercritical regimes. In contrast to POD, the SPT mode is formulated in the frequency domain, and the dynamic coherent structures can be defined in terms of amplitude and phase angle, which allows detection of the advection features of vortex shedding. In addition, it is observed that the energy contribution of the shedding induced lift force increases with Re and gradually becomes a dominant aerodynamic force at Reynolds numbers in the supercritical regime.  相似文献   

11.
Heng Ren  Xiyun Lu 《力学快报》2013,3(3):032007
A vortex ring impacting a three-dimensional circular cylinder is studied using large eddy simulation (LES) for a Reynolds number Re = 4 × 104 based on the initial translation speed and diameter of the vortex ring. We have investigated the evolution of vortical structures and identified three typical evolution phases. When the primary vortex closely approaches to the cylinder, a secondary vortex is generated and its segment parts move inward to the primary vortex ring. then two large-scale loop-like vortices are formed to evolve in opposite directions. Thirdly, the two loop-like vortices collide with each other to form complicated small-scale vortical structures. Moreover, a series of hair-pin vortices are generated due to the stretching and deformation of the tertiary vortex. The trajectories of vortical structures and the relevant evolution speeds are analyzed. The total kinetic energy and enstrophy are investigated to reveal their properties relevant to the three evolution phases.  相似文献   

12.
The Eckert number phenomenon was investigated theoretically by Geropp in 1969 and describes a reversal in heat transfer from a moving wall at an Eckert number Ec ≈ 1. In this report the Eckert number phenomenon is confirmed experimentally for the first time. For that purpose the heat transfer from a heated, vertically rotating cylinder in a crossflow was investigated. In order to perform the experiments in a range where the predicted phenomenon occurs, extreme rotational speeds were necessary. A heating concept had to be developed which allowed an input of heating power independent of the speed and which therefore had to be contact-free. The results show, among other things, that the temperature difference between the wall and the surrounding fluid has a significant effect on the predicted reversal of heat transfer at the wall. Moreover, maximum heat transfer occurs at an Eckert number Ec ≈ 0.3, which is of great importance for the cooling of hot surfaces in a gas-flow.  相似文献   

13.
In this paper, a theoretical study of heat transfer to a fluid of vanishing viscosity in laminar flow in a pipe is made. The constant wall temperature boundary condition is considered in order to facilitate comparison with other classical solutions. Using velocity profiles of simple geometrical shape, the dependence of the heat transfer on velocity distribution is illustrated. Because of the nature of the idealised flow and heat transfer models, the theoretical results are applicable to all axisymmetric flows. Accordingly, some account of the possible effects of swirl on heat transfer in real flows is given.
Zusammenfassung Es handelt sich um eine theoretische Untersuchung des Wärmeübergangs in laminarer Rohrströmung bei verschwindender Viskosität. Zum Vergleich mit anderen klassischen Lösungen wurde konstante Wandtemperatur als Randbedingung vorgegeben. Unter Benutzung von Geschwindigkeitsprofilen einfacher Geometrie wurde deren Einfluß auf den Wärmeübergang ermittelt. Diese Ergebnisse sind wegen der gewählten Strömungs- und Wärmeübergangsmodelle auf alle achsensymmetrischen Strömungen anwendbar. Die mögliche Wirkung einer Wirbelströmung auf den Wärmeübergang wird diskutiert.

Nomenclature =(k/c) Thermal diffusivity - C, C 1, C2, C3, Cn Constants - c Specific heat at constant pressure - D=(2rw) Diameter - k Thermal conductivity - M n Root of Bessel Equation,J 0(Mn)=0 - r Radius - T Temperature - u, Velocity, average velocity - x Axial distance - X, R Function ofx, (r) alone - n (= 2M n/r w 2 ) Eigen value - Dynamic viscosity - (=/) Kinematic viscosity - Density - (=(T-T w)/(T1-Tw)) Dimensionless temperature - (=(TT w)/(T 1T w)) Nusselt number - Pe (=Re·Pr) Péclet number - Pr (= c/k) Prandtl number - Re(=2rw·v) Reynolds number Suffixes b Bulk - 1 Inlet - w wall  相似文献   

14.
A narrow strip is used to control mean and fluctuating forces on a circular cylinder at Reynolds numbers from 2.0 × 104 to 1.0 × 105. The axes of the strip and cylinder are parallel. The control parameters are strip width ratio and strip position characterized by angle of attack and distance from the cylinder. Wind tunnel tests show that the vortex shedding from both sides of the cylinder can be suppressed, and mean drag and fluctuating lift on the cylinder can be reduced if the strip is installed in an effective zone downstream of the cylinder. A phenomenon of mono-side vortex shedding is found. The strip-induced local changes of velocity profiles in the near wake of the cylinder are measured, and the relation between base suction and peak value in the power spectrum of fluctuating lift is studied. The control mechanism is then discussed from different points of view. The project supported by the National Natural Science Foundation of China (10172087 and 10472124). The English text was polished by Yunming Chen.  相似文献   

15.
A direct numerical simulation of two-dimensional (2D) flow past an elastically mounted circular cylinder at low Reynolds number using the fictitious domain method had been undertaken. The cylinder motion was modelled by a two degree-of-freedom mass–spring–damper system. The computing code was verified against a benchmark problem in which flow past a stationary circular cylinder is simulated. Then, analyses of vortex-induced vibration (VIV) responses, drag and lift forces and the phase and vortex structures were carried out. Results show that the cylinder's non-dimensional cross-flow response amplitude reaches its summit of 0.572 in the ‘lock-in’ regime. The ‘2S’, instead of the ‘2P’, vortex shedding mode is dominated in the ‘lower’ branch for this 2D low-Re VIV. A secondary oscillation is observed in the lift force when ‘lock-in’ occurs. It is shown that this secondary component changes the phase, offset the energy input by the primary component and thus reduces the cylinder responses. Effects of the Skop–Griffin parameter on cylinder responses were also investigated.  相似文献   

16.
Jet impingement onto a hole with elevated wall temperature can be associated with the high‐temperature thermal drilling, where the gas jet is used for shielding the hole wall from the high‐temperature oxidation reactions as observed in the case of laser drilling. In laser processing, the molten flow from the hole wall occurs; and in the model study, the hole wall velocity resembling the molten flow should be accounted for. In the present study, gas jet impingement onto tapered hole with elevated temperature is considered and the heat transfer rates as well as skin friction at the hole wall surface are predicted. The velocity of molten flow from the hole wall determined from the previous study is adopted in the simulations and the effect of hole wall velocity on the heat transfer rates and skin friction is also examined. It is found that the Nusselt number and skin friction at the hole wall in the regions of hole inlet and exit attain high values. The influence of hole wall velocity on the Nusselt number and skin friction is found not to be very significant. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
李海宁  王海峰  郭修宇  孙凯利 《应用力学学报》2020,(2):882-887,I0029,I0030
为研究重叠网格与结构网格在圆柱绕流数值模拟中的区别,以二维圆柱为例,利用有限元分析软件ANSYS 19.2中的DM与Mesh建立模型并划分重叠网格,利用ANSYS 19.2中的ICEM建立模型并划分结构网格。采用FLUENT 19.2中laminar模型模拟分析系统中的平均升力系数、平均阻力系数、斯特劳哈尔数St等流体动力特性。通过改变流体流速得到两种不同网格下各6组雷诺数Re,这6组雷诺数在60~160之间。结果表明:结构网格与重叠网格的St都随着Re的增加而增加,但相同雷诺数下重叠网格对应的St数值更大,St的增长速度更快;重叠网格与结构网格的平均升力系数与平均阻力系数随着Re的增加趋于稳定的速度都加快,但结构网格的平均升力系数与平均阻力系数趋于稳定的速度更快,且两种网格的平均升力系数与平均阻力系数趋于稳定速度的差距逐渐缩小,当Re=160时,两种网格的平均升力系数与平均阻力系数趋于稳定的速度几乎相同;当雷诺数在60~160之间时,采用重叠网格计算出来的斯特劳哈尔数比结构网格更加接近理论值;从升力功率谱密度分布曲线中可以看出,随着雷诺数的增加,两种网格下的频率逐渐变大,并且相同雷诺数下重叠网格的频率比结构网格大。  相似文献   

18.
Flow around a two-dimensional circular cylinder of a stratified fluid with periods buoyancy Tb = 25.2 and 6.28 sec is studied numerically over a wide range of Reynolds and Froude numbers. It is found that in the presence of a perturbation ahead of a cylinder which moves downstream with increasing Reynolds number, the salinity isolines have the shape of a semi-circular comb with sharp teeth. The shape change of the attached waves and the occurrence of fluid layers of different densities in the cylinder wake are studied. In flows with a buoyancy period Tb = 6.28 sec at Reynolds numbers Re < 60, stagnant zones are found in the cylinder wake, and at Re > 60, these zones are absent.  相似文献   

19.
The transient natural convection of a fluid with Prandtl number of order 200 in a two-dimensional square cavity has been numerically studied. One of the vertical walls of the cavity is kept at a constant (ambient) temperature and a constant heat flux is applied on the opposite wall. The other walls are adiabatic. Initially, a boundary layer is formed near the heated wall; subsequently, a large vortical structure is generated, together with an upper intrusion layer. As time progresses, the average temperature in the cavity increases, and a descending boundary layer is formed near the constant temperature wall. During the transition to the steady-state regime, a thermal stratification pattern is formed. The results are compared with the scale analysis presented by Patterson and Imberger (1980).  相似文献   

20.
A technique for determining the criterion of transition from the laminar to the turbulent flow regime on a stabilized plasmatron channel section is proposed. The technique uses experimental data and the methods of numerical simulation of plasma flows. A criterial generalization of the experimental data which for the first time makes it possible to establish the boundary of transition from the laminar to the turbulent flow regime on a stabilized plasmatron channel section is proposed. The experimental results are in good agreement with the theoretical dependences derived in the study. A curve (analog of the neutral curve) separating the domains of existence of laminar and turbulent plasma flows in a cylindrical channel is constructed in the space of the plasmatron working parameters.Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, 2004, pp. 49–61. Original Russian Text Copyright © 2004 by Sinkevich and Chikunov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号