首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The present simulation investigates the multiphase cavitating flow around an underwater projectile. Based on the Homogeneous Equilibrium Flow assumption, a mixture model is applied to simulate the multiphase cavitating flow including ventilated cavitation caused by air injection as well as natural cavitation that forms in a region where the pressure of liquid falls below its vapor pressure. The transport equation cavitating model is applied. The calculations are executed based on a suite of CFD code. The hydrodynamics characteristics of flow field under the interaction of natural cavitation and ventilated cavitation is analyzed. The results indicate that the ventilated cavitation number is under a combined effect of the natural cavitation number and gas flow rate in the multiphase cavitating flows.  相似文献   

2.
为了定量分析空化初始航速的影响因素,首先分析侧斜和负载对螺旋桨无空化和有空化时性能的影响。以NSRDC4381无侧斜桨和4383100%侧斜桨为对象,采用改进Sauer空化模型和修正SST湍流模型,对空化崩溃性能、空化初生性能和无空化时正车、倒车以及紧急倒车敞水性能进行了计算与比较。结果表明,预报两个桨的敞水性能曲线和多空化数下的空化崩溃性能曲线均与实验值吻合较好。在中度负载区间(J=0.5-0.9)内,侧斜对正车和紧急倒车时敞水性能以及空化时推力和力矩崩溃性能均无明显影响,但会使倒车敞水性能显著下降。在重载和轻载条件下,侧斜均能明显改善空化初生性能。侧斜一定时,负载会直接影响尾流湍流速度脉动量和涡核集中区分布,影响轴面速度流管收缩程度,进而影响无空化和有空化条件下的推进性能。  相似文献   

3.
The objective of this work is to simulate and analyze the formations of three-dimensional tip leakage vortex (TLV) cavitation cloud and the periodic collapse of TLV-induced suction-side-perpendicular cavitating vortice (SSPCV). Firstly, the improved SST kω turbulence model and the homogeneous cavitation model were validated by comparing the simulation result with the experiment of unsteady cavitation shedding flow around the NACA66-mod hydrofoil, and then the unsteady TLV cloud cavitation and unstable SSPCV in an axial flow pump were predicted using the improved numerical method. The predicted three-dimensional cavitation structures of TLV and SSPCV as well as the collapsing features show a good qualitative agreement with the high speed photography results. Numerical results show that the TLV cavitation cloud in the axial flow pump mainly includes tip clearance cavitation, shear layer cavitation, and TLV cavitation. The unsteady TLV cavitation cloud occurs near the blade trailing edge (TE) where the shapes of sheet cavitation and TLV cavitation fluctuate. The inception of SSPCV is attributed to the tail of the shedding cavitation cloud originally attached on the suction side (SS) surface of blade, and the entrainment affect of the TLV and the influence of the tip leakage flow at the tailing edge contribute to the orientation and development of the SSPCV. The existence of SSPCV was evidently approved to be a universal phenomenon in axial flow pumps. At the part-load flow rate condition, the SSPCV may trigger cavitation instability and suppress the tip cavitation in the neighboring blade. The cavitation cloud on the SS surface of the neighboring blade grows massively, accompanying with a new SSPCV in the neighboring flow passage, and this SSPCV collapses in a relatively short time.  相似文献   

4.
Experiments on a water cavitating orifice were conducted to investigate the influence of pressure and temperature on flow regime transition due to cavitation. The thermal effects could be important in cases with cryogenic cavitation or hot fluid injection. The investigations were based on CCD observations and a pressure fluctuations frequency analysis.The high-speed photographic recordings were used to analyze the cavitation evolution and individuate the frequency content of the two-phase flow by processing the pixel-intensity time-series data.The cavitating structures showed different behaviors and characteristics with variations in operating conditions, as the pressure inside the orifice and the flow temperature .The flow regime map for the cavitating flow was obtained using experimental observations to analyze the occurrence of the different two-phase flow regime transitions at various operating conditions.As the pressure at the orifice inlet increased, at the same downstream pressure, cavitation inception occurred. The decrease of the cavitation number brought a significant increase in cavitation zone extension. As the pressure drop inside the orifice increased, the cavitation was characterized by an evident increase in cavitation zone length to the outlet of the orifice. With a further cavitation number decrease, the transition to jet cavitation was evident.The temperature influenced both the cavitation intensity and the cavitation number at which different two-phase flow regime transitions occurred, which tended to increase with temperature.The vapor fraction was estimated using an image processing algorithm.The frequency content given by the pressure fluctuations was analyzed and compared with the frequency spectra obtained from the visual observations. The behavior of the different cavitating flows could be correlated to the frequency spectrum of the pressure fluctuations measured upstream and downstream of the orifice. The cavitation number reduction and consequent increase in cavitating area width were related to a corresponding significant increase in the amplitude of typical frequency components. The transition to jet cavitation was characterized by a significant increase in the first peak in the frequency spectrum; weaker spectral peaks were also present at high cavitation numbers.  相似文献   

5.
Dynamics of cavitation–structure interaction   总被引:1,自引:1,他引:0  
Cavitation–structure interaction has become one of the major issues for most engineering applications. The present work reviews recent progress made toward developing experimental and numerical investigation for unsteady turbulent cavitating flow and cavitation–structure interaction. The goal of our overall efforts is to(1) summarize the progress made in the experimental and numerical modeling and approaches for unsteady cavitating flow and cavitation–structure interaction,(2) discuss the global multiphase structures for different cavitation regimes, with special emphasis on the unsteady development of cloud cavitation and corresponding cavitating flow-induced vibrations,with a high-speed visualization system and a structural vibration measurement system, as well as a simultaneous sampling system,(3) improve the understanding of the hydroelastic response in cavitating flows via combined physical and numerical analysis, with particular emphasis on the interaction between unsteady cavitation development and structural deformations. Issues including unsteady cavitating flow structures and cavitation–structure interaction mechanism are discussed.  相似文献   

6.
The paper presents an investigation of Euler–Lagrangian methods for cavitating two-phase flows. The Euler–Euler methods, widely used for simulations of cavitating flows in ship technology, perform well in regions of moderate flow changes but fail in zones of strong, vortical flow. Reasons are the strong approximations of cavitation models in the Euler concept. Alternatively, Euler–Lagrangian concepts enable more detailed formulations for transport, dynamics and acoustic of discrete vapor bubbles. Test calculations are performed to study the influence of different parameters in the equations of motion and in the Rayleigh–Plesset equation for bubble dynamics. Results confirm that only Lagrangian models are able to describe correctly the bubble behavior in vortices, while Eulerian results deviate strongly. Lagrangian formulations enable additionally the determination of acoustic pressure of cavitation noise. Two-way coupling between the phases is required for large regions of the vapor phase. A new coupling concept between continuous fluid flow and discrete bubble phase is developed and demonstrated for flow through a nozzle. However, the iterative coupling between the phases via volume fractions is computationally expensive and should therefore be applied only in regions where Eulerian treatment fails. A corresponding local concept for combination with an Euler–Euler method is outlined and is in progress.  相似文献   

7.
To better understand the multiphase fluid dynamics and associated transport processes of cavitating flows at the capillary number of 0.74 and 0.54, and to validate the numerical results, a combined computational and experimental investigation of flows around a hydrofoil is studied based on flow visualizations and time-resolved interface movement. The computational model is based on a modified RNG k-ε model as turbulence closure, along with a vapor-liquid mass transfer model for treating the cavitation process. Overall, favorable agreement between the numerical and experimental results is observed. It is shown that the cavi- tation structure depends on the interaction of the water-vapor mixture and the vapor among the whole cavitation stage, the interface between the vapor and the two-phase mixture exhibits substantial unsteadiness. And, the adverse motion of the interface relates to pressure and velocity fluctuations inside the cavity. In particular, the velocity in the vapor region is lower than that in the two-phase region.  相似文献   

8.
收缩扩张管内液氮空化流动演化过程试验研究   总被引:1,自引:1,他引:0  
本文基于低温空化试验平台研究了收缩扩张流道内液氮非定常空化流动的演化过程. 试验采用高时空分辨率的高速摄像机对77 K液氮在不同空化数σ下空穴结构的演变进行了精细化的分析和研究. 利用试验得到的空穴长度和面积等数据, 定量分析了液氮空化流动的非定常特性与时空演变规律. 研究结果表明: (1)在相似来流速度和温度条件下, 随着空化数的减小, 液氮空化流动呈现四种典型流型, 空穴长度在2.5 h以内为初生空化、空穴长度在2.5 h ~ 7.5 h之间为片状空化、空穴长度在7.5 h ~ 15 h之间为大尺度云状空化, 空穴长度超过15 h为双云状空化, 且在大尺度云状空化和双云状空化阶段均捕捉到了回射流现象; (2)液氮空化流动从初生空化到双云状空化, 脱落空穴的尺度逐渐增大, 空穴面积脉动的幅值和准周期均有所增加. 同时, 在大尺度云状空化与双云状空化阶段, 喉口处堵塞效应对空化流动的影响显著增强; (3)相比于初生空化, 片状空化、大尺度云状空化以及双云状空化中脱落空穴的移动距离依次增加了0.97倍、2.65倍与2.68倍, 溃灭时间依次增加了1.18倍、3.59倍与4.47倍, 但溃灭速度依次减小了0.10倍、0.20倍与0.30倍. 除此之外, 对于双云状空化阶段, 存在两种显著不同的脱落空穴演化过程.   相似文献   

9.
程怀玉  季斌  龙新平  槐文信 《力学学报》2021,53(5):1268-1287
利用大涡模拟方法及一个考虑气核效应的欧拉?拉格朗日新空化模型,对绕NACA0009水翼叶顶间隙泄漏涡(top-leakage vortex,TLV)及其空化流动开展了高精度的模拟,结果显示数值模拟与实验吻合较好.在此基础上进一步讨论了不同间隙大小对TLV空化的演变行为及其发生前后TLV强度、气核分布以及切向速度分布等特...  相似文献   

10.
An aerofoil above which is built the artificial cavity low pressure region is called"cavitating airfoil".By using generalized Blasius’s theorem and conformal transformation,this paper investgates the problem of the flow past the aerofoil of cavitatting airfoil with thejetstream above cavitation,and gives the formulae of the lift and thrust.  相似文献   

11.
田北晨  李林敏  陈杰  黄彪  曹军伟 《力学学报》2022,54(6):1557-1571
空化的多尺度效应是一种涉及连续介质尺度、微尺度空化泡以及不同尺度间相互转化的复杂水动力学现象, 跨尺度模型的构建是解析该多尺度现象的关键. 本文基于欧拉-拉格朗日联合算法, 通过界面捕捉法求解欧拉体系下大尺度空穴演化, 通过拉格朗日体系下离散空泡模型求解亚网格尺度离散空泡的运动及生长溃灭. 同时, 通过判断空泡与网格尺度间的关系判定不同尺度空化泡的求解模型. 基于建立的多尺度算法对绕NACA66水翼空化流动进行模拟, 将数值结果与实验进行对比, 验证了数值计算方法的准确性. 研究结果表明, 离散空泡数量与空化发展阶段密切相关, 在附着型片状空穴生长阶段, 离散空泡数量波动较小, 离散空泡主要分布在气液交界面位置; 在回射流发展阶段, 离散空泡逐渐增加并分布在回射流扰动区; 在云状空穴溃灭阶段, 离散空泡数量增多且主要分布在气液掺混剧烈的空化云团溃灭区. 在各空化发展阶段, 离散空泡直径概率密度函数均符合伽玛分布. 空化湍流流场特性对拉格朗日空泡空间分布具有重要影响, 离散空泡主要分布在强湍脉动区、旋涡及回射流发展区域.   相似文献   

12.
空泡流非稳态现象的流动控制   总被引:3,自引:0,他引:3  
顾巍  何友声 《力学学报》2001,33(1):19-27
处于跨临界阶段的空泡流必然导致强烈的周期性冲击和振动,空泡流的激振来源于空泡云的周期性大规模脱落,空泡云的形成和发展与流动的边界层效应有着强烈的相关性,且空泡末端的局部流动直接影响空泡流的整体稳定性,本试验在NACA16012水翼表面粘附一条展向1mm厚10mm宽的挡流条,尝试以干扰水翼上表面局部流动的方法来影响整个空泡流的形态及其流动稳定性,最终在一定的空泡数范围内抑制了空泡流激振现象,并从试验研究的角度探索了空泡云脱落的机理。  相似文献   

13.
Cavitating turbulent flow around hydrofoils was simulated using the Partially-Averaged Navier–Stokes (PANS) method and a mass transfer cavitation model with the maximum density ratio (ρl/ρv,clip) effect between the liquid and the vapor. The predicted cavity length and thickness of stable cavities as well as the pressure distribution along the suction surface of a NACA66(MOD) hydrofoil compare well with experimental data when using the actual maximum density ratio (ρl/ρv,clip = 43391) at room temperature. The unsteady cavitation patterns and their evolution around a Delft twisted hydrofoil were then simulated. The numerical results indicate that the cavity volume fluctuates dramatically as the cavitating flow develops with cavity growth, destabilization, and collapse. The predicted three dimensional cavity structures due to the variation of attack angle in the span-wise direction and the shedding cycle as well as its frequency agree fairly well with experimental observations. The distinct side-lobes of the attached cavity and the shedding U-shaped horse-shoe vortex are well captured. Furthermore, it is shown that the shedding horse-shoe vortex includes a primary U-shaped vapor cloud and two secondary U-shaped vapor clouds originating from the primary shedding at the cavity center and the secondary shedding at both cavity sides. The primary shedding is related to the collision of a radially-diverging re-entrant jet and the attached cavity surface, while the secondary shedding is due to the collision of side-entrant jets and the radially-diverging re-entrant jet. The local flow fields show that the interaction between the circulating flow and the shedding vapor cloud may be the main mechanism producing the cavitating horse-shoe vortex. Two side views described by iso-surfaces of the vapor volume fraction for a 10% vapor volume, and a non-dimensional Q-criterion equal to 200 are used to illustrate the formation, roll-up and transport of the shedding horse-shoe vortex. The predicted height of the shedding horse-shoe vortex increases as the vortex moves downstream. It is shown that the shape of the horse-shoe vortex for the non-dimensional Q-criterion is more complicated than that of the 10% vapor fraction iso-surface and is more consistent with the experiments. Further, though the time-averaged lift coefficient predicted by the PANS calculation is about 12% lower than the experimental value, it is better than other predictions based on RANS solvers.  相似文献   

14.
空化作为一种重要的复杂水动力学现象,具有明显的三维流动特征与剧烈的非定常特性,在水力机械、船舶推进器、水利工程中广泛存在,且通常会带来不利的影响,长期以来一直是水动力学领域研究的重点与难点课题之一.本文首先从实验测量和数值模拟两个角度,综述了空化水动力学非定常特性研究的发展概况, 分析了当前存在的问题.在空化实验研究中,主要介绍了空化水洞、空化流场测量以及多物理场同步测量等方面所取得的进展.在数值模拟方法中, 对目前的空化模型和湍流模型进行了分类介绍,并重点讨论了大涡模拟、验证和确认等在空化流模拟中的应用.之后以附着型空化为主, 同时兼顾云状空泡、空蚀、涡空化等,梳理了其研究中存在的几个关键科学问题,包括空化演变、空化流动的三维结构、失稳机制、空化不稳定性及其与低频压力脉动的联系、空化与旋涡的相互作用、空化与弹性水翼的流固耦合、空化对尾流场影响等.最后展望了空化水动力学的研究方向和未来发展趋势.  相似文献   

15.
空化水动力学非定常特性研究进展及展望   总被引:1,自引:0,他引:1  
空化作为一种重要的复杂水动力学现象,具有明显的三维流动特征与剧烈的非定常特性,在水力机械、船舶推进器、水利工程中广泛存在,且通常会带来不利的影响,长期以来一直是水动力学领域研究的重点与难点课题之一.本文首先从实验测量和数值模拟两个角度,综述了空化水动力学非定常特性研究的发展概况, 分析了当前存在的问题.在空化实验研究中,主要介绍了空化水洞、空化流场测量以及多物理场同步测量等方面所取得的进展.在数值模拟方法中, 对目前的空化模型和湍流模型进行了分类介绍,并重点讨论了大涡模拟、验证和确认等在空化流模拟中的应用.之后以附着型空化为主, 同时兼顾云状空泡、空蚀、涡空化等,梳理了其研究中存在的几个关键科学问题,包括空化演变、空化流动的三维结构、失稳机制、空化不稳定性及其与低频压力脉动的联系、空化与旋涡的相互作用、空化与弹性水翼的流固耦合、空化对尾流场影响等.最后展望了空化水动力学的研究方向和未来发展趋势.   相似文献   

16.
绕水翼超空化流动形态与速度分布   总被引:4,自引:0,他引:4  
为揭示超空化流场结构特性,利用高速全流场显示技术,观察了绕hydronautics水翼的超空化流动形态,并利用数字粒子图像测速仪(DPIV)测量了其速度分布. 在测量空穴内部流速分布时,采用空化流场中的空化泡作为示踪粒子来显示流动结构. 结果表明:随着空化数的降低,超空化流动显现出了明显的阶段特征,其中水汽混合相和汽相的分布决定了空化区域的形态与流速分布;空化区和主流区的汽液交界面处存在着较大的速度梯度;低速分布区域随着空化数的降低由水翼吸力面中后部向水翼下游移动;在空化区域内部,水汽混合区的速度相对较低,而汽相区则与主流区有着相近的速度分布.关键词超空化水翼、DPIV、高速摄像、空化形态、流速分布   相似文献   

17.
用计算流体力学方法,数值模拟水润滑轴承空化-冲蚀交互作用时气液固三相流场的动力学特性(压力场、速度场、气含率分布),然后在水润滑轴承摩擦磨损装置上,进行试件磨损试验,并观察试件表面形貌.结果表明:考虑空化影响后,水润滑轴承整个流场压力分布更接近实际;数值模拟所得的流场压力、速度、气含率最大值,均出现在发生空化的位置附近,其余位置基本不变,说明交互磨损比单一磨损严重.观察试件表面磨痕,存在短程犁沟、空蚀针孔、麻点状气蚀坑和蚀坑,磨痕呈现规律性,磨痕与轴转速的方向基本一致.试验结果和数值计算吻合较好,证明了理论分析的正确与合理.上述仿真与试验初步探讨了水润滑轴承空化与冲蚀交互作用的磨损机理与影响因素.  相似文献   

18.
The present paper deals with the numerical calculation of hydrodynamic mass and damping coefficients under consideration of unsteady sheet cavitation on marine propeller flows. In the first part of the paper, the mathematical and numerical background behind the numerical method is introduced. The numerical calculations carried out in this work are based on a low-order panel method. Panel methods belong to the class of collocation techniques and are applied to obtain a numerical solution of a potential flow based system of boundary integral equations. They are suitable for the present application because of their short computation time which makes them applicable in the design process of marine propellers.Additionally, two different approaches for the determination of hydrodynamic masses and damping are introduced in this work. The hydrodynamic masses and damping are important in studies of the ship motion in seaway and in the analysis of vibrations of a vessel and its appendages. The developed approaches are applied on a propeller flow in heave motion. Hereby, the calculations are performed for a non-rotating and rotating propeller under non-cavitating and cavitating conditions. The results obtained from the simulations are discussed in detail and an outlook is given.  相似文献   

19.
Cavitation inception and growth on conventional shape hydrofoils and blades leads initially to a jump of their flow-induced noise, further to an amplification of flow-induced vibration with frequently assisted erosion and finally, to a lift/thrust decrease combined with the drag increase. These undesirable cavitation effects can be mitigated or even suppressed for stable partial cavities experiencing no tail pulsations. A design approach enhancing performance of cavitating hydrofoils/blades by maintaining stable partial cavities is described. Experimental data manifesting an increase of hydrofoil lift with reduction of its drag and of force pulsations by such design are provided. Application of this design approach to propeller/turbine blades and advantages of its employment for blades operating in non-uniform incoming flows are analyzed. The possibility of an increase of the lift to drag ratio and of a reduction of the cavity volume oscillation in gust flows for blade sections is numerically manifested.  相似文献   

20.
Cavitation in hydraulic machines causes different problems that can be related to its unsteady nature. An experimental and numerical study of developed cavitating flow was performed. Until now simulations of cavitating flow were limited to the self developed “in house” CFD codes. The goal of the work was to experimentally evaluate the capabilities of a commercial CFD code (Fluent) for simulation of a developed cavitating flow. Two simple hydrofoils that feature some 3D effects of cavitation were used for the experiments. A relatively new technique where PIV method combined with LIF technique was used to experimentally determine the instantaneous and average velocity and void ratio fields (cavity shapes) around the hydrofoils. Distribution of static pressure on the hydrofoil surface was determined. For the numerical simulation of cavitating flow a bubble dynamics cavitation model was used to describe the generation and evaporation of vapour phase. An unsteady RANS 3D simulation was performed. Comparison between numerical and experimental results shows good correlation. The distribution and size of vapour structures and the velocity fields agree well. The distribution of pressure on the hydrofoil surface is correctly predicted. The numerically predicted shedding frequencies are in fair agreement with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号