首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The multiparametric nature of nanoparticle self‐assembly makes it challenging to circumvent the instabilities that lead to aggregation and achieve crystallization under extreme conditions. By using non‐base‐pairing DNA as a model ligand instead of the typical base‐pairing design for programmability, long‐range 2D DNA–gold nanoparticle crystals can be obtained at extremely high salt concentrations and in a divalent salt environment. The interparticle spacings in these 2D nanoparticle crystals can be engineered and further tuned based on an empirical model incorporating the parameters of ligand length and ionic strength.  相似文献   

7.
8.
9.
10.
11.
The facile and efficient one‐pot synthesis of monodisperse, highly crosslinked, and “living” functional copolymer microspheres by the ambient temperature iniferter‐induced “living” radical precipitation polymerization (ILRPP) is described for the first time. The simple introduction of iniferter‐induced “living” radical polymerization (ILRP) mechanism into precipitation polymerization system, together with the use of ethanol solvent, allows the direct generation of such uniform functional copolymer microspheres. The polymerization parameters (including monomer loading, iniferter concentration, molar ratio of crosslinker to monovinyl comonomer, and polymerization time and scale) showed much influence on the morphologies of the resulting copolymer microspheres, thus permitting the convenient tailoring of the particle sizes by easily tuning the reaction conditions. In particular, monodisperse poly(4‐vinylpyridine‐co‐ethylene glycol dimethacrylate) microspheres were prepared by the ambient temperature ILRPP even at a high monomer loading of 18 vol %. The general applicability of the ambient temperature ILRPP was confirmed by the preparation of uniform copolymer microspheres with incorporated glycidyl methacrylate. Moreover, the “livingness” of the resulting polymer microspheres was verified by their direct grafting of hydrophilic polymer brushes via surface‐initiated ILRP. Furthermore, a “grafting from” particle growth mechanism was proposed for ILRPP, which is considerably different from the “grafting to” particle growth mechanism in the traditional precipitation polymerization. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

12.
In the present study, a recently described molecular approach, namely sequence‐related amplified polymorphism (SRAP), which preferentially amplifies ORFs, was evaluated for the studies of genetic variation among Fasciola hepatica, Fasciola gigantica and the “intermediate” Fasciola from different host species and geographical locations in mainland China. Five SRAP primer combinations were used to amplify 120 Fasciola samples after ten SRAP primer combinations were evaluated. The number of fragments amplified from Fasciola samples using each primer combination ranged from 12 to 20, with an average of 15 polymorphic bands per primer pair. Fifty‐nine main polymorphic bands were observed, ranging in size from 100 to 2000 bp, and SRAP bands specific to F. hepatica or F. gigantica were observed. SRAP fragments common to F. hepatica and the “intermediate” Fasciola, or common to F. gigantica and the “intermediate” Fasciola were identified, excised and confirmed by PCR amplification of genomic DNA using primers designed based on sequences of these SRAP fragments. Based on SRAP profiles, unweighted pair‐group method with arithmetic averages clustering algorithm categorized all of the examined representative Fasciola samples into three groups, representing the F. hepatica, the “intermediate” Fasciola, or the F. gigantica. These results demonstrated the usefulness of the SRAP technique for revealing genetic variability between F. hepatica, F. gigantica and the “intermediate” Fasciola, and also provided genomic evidence for the existence of the “intermediate” Fasciola between F. hepatica and F. gigantica. This technique provides an alternative and a useful tool for the genetic characterization and studies of genetic variability in parasites.  相似文献   

13.
?Ytterbiumdisulfide”?: A Correction The still open questions concerning preparation and crystal structure of ?Ytterbiumdisulfide”? could be answered now using new experimental results. The formerly investigated single crystals were not YbIIS2 but BaS2.  相似文献   

14.
The main purpose of this work is the development and validation of a general scheme based on a systematic and automatic “quasi‐flexible” docking approach for studying stereoselective recognition mechanisms. To achieve our goals we explore the conformational and configurational space for small‐ or medium‐size flexible molecules in a systematic way, seeking a method that is both reasonably accurate and relatively fast from the computational point of view. In particular, we have developed a general computational protocol for the global molecular interaction evaluation (“Glob‐MolInE”) to efficiently explore the orientational and conformational space of flexible selectors and selectands used in modern chiral high‐performance liquid chromatography (HPLC); the enantioselective binding of the selector (S)‐N‐(3,5‐dinitrobenzoyl)‐leucine‐ n‐propylamide (S)‐ 1 towards the selectand N‐(2‐naphthyl)‐alanine methyl ester 2 has been studied; the global minimum obtained for the homochiral associate [S( 1 )/S( 2 )] (Pop. >99%) is very close (RMS≃0.20) to the crystallographically determined structure. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 515–530, 2000  相似文献   

15.
16.
17.
Despite the efficiency and robustness of the widely used copper‐catalyzed 1,3‐dipolar cycloaddition reaction, the use of copper as a catalyst is often not attractive, particularly for materials intended for biological systems. The use of photo‐initiated thiol‐ene as an alternative “click” reaction to synthesize “model networks” is investigated here. Poly(N‐isopropylacrylamide) precursors were synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization and were designed to have trithiocarbonate moieties as end groups. This structure design provides opportunity for subsequent end‐group modifications in preparation for thiol‐ene “click.” Two reaction routes have been proposed and studied to yield thiol and ene moieties. The advantages and disadvantages of each reaction path were investigated to propose a simple but efficient route to prepare copper‐free “click” hydrogels. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4626–4636  相似文献   

18.
19.
The couples benzene‐thiophene, benzene‐pyridine, thiophene‐furane represent prominent examples of bioisosterism in drug research. These cycles are aromatic and similar of expansion and electronical properties (isostere). The concept of bioisosterism includes also the replacement of substituents and atoms in pharmacologically active compounds. Selected drugs are shown to introduce into this important principle of rational drug design.  相似文献   

20.
Summary: The grafting of poly(ethylene oxide) (PEO) onto silica nanoparticles was performed in situ by the ring‐opening polymerization of the oxirane monomer initiated from the mineral surface using aluminium isopropoxide as an initiator/heterogeneous catalyst. Alcohol groups were first introduced onto silica by reacting the surfacic silanols with prehydrolyzed 3‐glycidoxypropyl trimethoxysilane. The alcohol‐grafted silica played the role of a coinitiator/chain‐transfer agent in the polymerization reaction and enabled the formation of irreversibly bonded polymer chains. Silica nanoparticles containing up to 40 wt.‐% of a hairy layer of grafted PEO chains were successfully produced by this technique.

The grafting of poly(ethylene oxide) (PEO) onto silica nanoparticles by in‐situ ring‐opening polymerization of the oxirane monomer.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号