首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
The design of efficient noncentrosymmetric materials remains the ultimate goal in the field of organic second‐order nonlinear optics. Unlike inorganic crystals currently used in second‐order nonlinear optical applications, organic materials are an attractive alternative owing to their fast electro‐optical response and processability, but their alignment into noncentrosymmetric film remains challenging. Here, symmetry breaking by judicious functionalization of 3D organic octupoles allows the emergence of multifunctional liquid crystalline chromophores which can easily be processed into large, flexible, thin, and self‐oriented films with second harmonic generation responses competitive to the prototypical inorganic KH2PO4 crystals. The liquid‐crystalline nature of these chiral organic films also permits the modulation of the nonlinear optical properties owing to the sensitivity of the supramolecular organization to temperature, leading to the development of tunable macroscopic materials.  相似文献   

11.
12.
Spontaneous mirror‐symmetry breaking is a fundamental process for development of chirality in natural and in artificial self‐assembled systems. A series of triple chain azobenzene based rod‐like compounds is investigated that show mirror‐symmetry breaking in an isotropic liquid occurring adjacent to a lamellar LC phase. The transition between the lamellar phase and the symmetry‐broken liquid is affected by trans cis photoisomerization, which allows a fast and reversible photoinduced switching between chiral and achiral states with non‐polarized light.  相似文献   

13.
14.
15.
16.
To achieve enantioselective electroanalysis either chiral electrodes or chiral media are needed. High enantiodiscrimination properties can be granted by the “inherent chirality” strategy of developing molecular materials in which the stereogenic element responsible for chirality coincides with the molecular portion responsible for their specific properties, an approach recently yielding outstanding performances as electrode surfaces. Inherently chiral ionic liquids (ICILs) have now been prepared starting from atropisomeric 3,3′‐bicollidine, synthesized from inexpensive reagents, resolved into antipodes without need of chiral HPLC and converted into long‐chain dialkyl salts with melting points below room temperature. Both the new ICILs and shorter family terms, solid at room temperature, employed as low‐concentration additives in achiral ILs, afford impressive enantioselection for the enantiomers of different probes on achiral electrodes, regularly increasing with additive concentration.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号