首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Synthesis and Crystal Structures of (PPh4)2[As2Se4Cl12] and (PPh4)2[As2Se4Br12] The reaction of PPh4Cl and As2Se3 with SOCl2 or with chlorine in dichloromethane affords (PPh4)2[As2Se4Cl12] with good yields. From PPh4Br, As2Se3 and bromine the corresponding bromo compound was obtained. According to the X-ray crystal structure determinations both compounds are isotypic, crystallizing in the space group of P1 . In the anions two Se2X2 molecules are linked with two X? ions forming an Se4X2 ring in chair conformation. Each X?-ion is associated with an additional AsX3 molecule (X = Cl, Br).  相似文献   

3.
New Phosphido-bridged Multinuclear Complexes of Ag, Cd and Zn. The Crystal Structures of [Ag4(PPh2)4(PMe3)4], [Ag6(PPh2)6(PtBu3)2] and [M4Cl4(PPh2)4(PnPr3)2] (M = Zn, Cd) AgCl reacts with Ph2PSiMe3 in the presence of a tertiary Phosphine PMe3 or PtBu3 to form the multinuclear complexes [Ag4(PPh2)4(PMe3)4] ( 1 ) and [Ag6(PPh2)6(PtBu3)2] ( 2 ). In analogy to that MCl2 reacts with Ph2PSiMe3 in the presence of PnPr3 to form the two multinuclear complexes [M4Cl4(PPh2)4(PnPr3)2] (M = Zn ( 3 ), Cd ( 4 )). The structures were characterized by X-ray single crystal structure analysis ( 1 : space group Pna21 (Nr. 33), Z = 4, a = 1 313.8(11) pm, b = 1 511.1(6) pm, c = 4 126.0(18) pm, 2 : space group P1 (Nr. 2), Z = 2, a = 1 559.0(4) pm, b = 1 885.9(7) pm, c = 2 112.4(8) pm, α = 104.93(3)°, β = 94.48(3)°, γ = 104.41(3)°; 3 : space group C2/c (Nr. 15), Z = 4, a = 2 228.6(6) pm, b = 1 847.6(6) pm, c = 1 827.3(6) pm, β = 110.86(2); 4 : space group C2/c (Nr. 15), Z = 4, a = 1 894.2(9) pm, b = 1 867.9(7) pm, c = 2 264.8(6) pm, β = 111.77(3)°). 3 and 4 may be considered as intermediates on the route towards polymeric [M(PPh2)2]n (M = Zn, Cd).  相似文献   

4.
5.
6.
Cyclic Polyselenidoarsenates(III) and Polyselenidoantimonates(III): PPh4[Se5AsSe], PPh4[AsSe6–xS x ], (PPh4)2[As2Se6] · 2 CH3CN, and (PPh4)2[Se6SbSe]2 In acetonitrile, AsCl3 and sodiumphenolate formed Cl2AsOPh which then was reacted with PPh4Se5 and finally with Na2Se to yield PPh4[Se5AsSe]. With Na2S instead of Na2Se, PPh4[AsSe6–xSx] was obtained; the sulfur contents increased with increasing reaction temperature and time (x = 0.21 to 1.09). With PPh4Se2 instead of PPh4Se5, (PPh4)2[1,4-As2Se6] · 2 CH3CN and PPh4[Se5AsSe] were the products. With SbCl3 instead of AsCl3, (PPh4)2[Se6SbSe]2 formed. PPh4[Se5AsSe] can also be produced from As2Se3, PPh4Br, Na2Se and selenium in acetonitrile. The crystal structure of PPh4[SeAsSe5] is isotypic with PPh4[S5AsS] (X-ray structure analysis with 2414 observed reflexions, R = 0.038). The Se5AsSe ion consists of a six-membered AsSe5 ring in chair conformation, and the As atom has an additional terminal Se atom. The compounds PPh4[AsSe6–xSx] have the same crystal structures, with sulfur atoms taking all selenium positions at random, but with a preference for the terminal position. The anion in (PPh4)2[As2Se6] · 2 CH3CN also has a six-membered ring structure in chair conformation, with two arsenic atoms in positions 1 and 4. The centrosymmetric anion in (PPh4)2[Se6SbSe]2 consists of a central Sb2Se2 ring, and a Se6 ligand is bonded in a chelating manner to each Sb atom (X-ray structure analysis with 2669 observed reflexions, R = 0.099). 77Se-NMR spectra are reported.  相似文献   

7.
8.
Synthesis and Crystal Structures of (PPh4)2[In(S4)(S6)Cl] and (PPh4)2[In(S4)Cl3] InCl and PPh4Cl yield (PPh4)2[In2Cl6] in acetonitrile. This reacts with Na2S4 in presence of PPh4Cl, forming (PPh4)2[In(S4)(S6)Cl]. Its crystal structure was determined by X-ray diffraction (R = 0.075, 2 282 observed reflexions). It is isotypic with (PPh4)2[In(S4)(S6)Br] and contains anions with trigonal-bipyramidal coordination of In, Cl occupying an axial position, and the S4 and S6 groups being bonded in a chelate manner. The reaction of (PPh4)2[In2Cl6] and sulfur in acetonitrile yielded (PPh4)2[InCl5] and (PPh4)2[In(S4)Cl3]. The crystal structure analysis of the latter (R = 0.072, 4 080 reflexions) revealed an anion with distorted trigonal-bipyramidal coordination of In, the S4 group occupying one axial and one equatorial position; the S4 group shows positional disorder.  相似文献   

9.
Reaction of C(NMe2)4 with Ni(CO)4 – Syntheses and Structures of [C(NMe2)3][(CO)3NiC(O)NMe2], [C(NMe2)3]2[Ni5(CO)12], and [C(NMe2)3]3[Ni6(CO)12][O2CNMe2] The reaction of C(NMe2)4 with Ni(CO)4 in THF produces the carbamoyl complex [C(NMe2)3][(CO)3NiC(O)NMe2] ( 1 ); side products are the purple cluster compound [C(NMe2)3]2[Ni5(CO)12] · THF ( 2 · THF) and the red cocristallization product [C(NMe2)3]3[Ni6(CO)12][O2CNMe2] ( 3 ). All compounds were studied by X‐ray diffraction analyses. The cations of 3 are all disordered but not those of 1 and 2 . The unit cell of 1 contains two crystallographically independent anions (I and II) which differ in the dihedral angle between the plane of the carbamoyl ligand and the plane defined by the atoms CCarbamoyl–Ni–CO amounting 0° in the anion I and 18° in the anion II.  相似文献   

10.
New Phosphido-bridged Multinuclear Complexes of Ag and Zn. The Crystal Structures of [Ag3(PPh2)3(PnBu2tBu)3], [Ag4(PPh2)4(PR3)4] (PR3 = PMenPr2, PnPr3), [Ag4(PPh2)4(PEt3)4]n, [Zn4(PPh2)4Cl4(PRR′2)2] (PRR′2 = PMenPr2, PnBu3, PEt2Ph), [Zn4(PhPSiMe3)4Cl4(C4H8O)2] and [Zn4(PtBu2)4Cl4] AgCl reacts with Ph2PSiMe3 in the presence of tertiary Phosphines (PnBu2tBu, PMenPr2, PnPr3 and PEt3) to form the multinuclear complexes [Ag3(PPh2)3(PnBu2tBu)3] 1 , [Ag4(PPh2)4(PR3)4] (PR3 = PMenPr2 2 , PnPr3 3 ) and [Ag4(PPh2)4(PEt3)4]n 4 . In analogy to that ZnCl2 reacts with Ph2PSiMe3 and PRR′2 to form the multinuclear complexes [Zn4(PPh2)4Cl4(PRR′2)2] (PRR′2 = PMenPr2 5 , PnBu3 6 , PEt2Ph 7 ). Further it was possible to obtain the compounds [Zn4(PhPSiMe3)4Cl4(C4H8O)2] 8 and [Zn4(PtBu2)4Cl4] 9 by reaction of ZnCl2 with PhP(SiMe3)2 and tBu2PSiMe3, respectively. The structures were characterized by X-ray single crystal structure analysis. Crystallographic data see “Inhaltsübersicht”.  相似文献   

11.
12.
The binary zirconium and hafnium polyazides [PPh4]2[M(N3)6] (M=Zr, Hf) were obtained in near quantitative yields from the corresponding metal fluorides MF4 by fluoride–azide exchange reactions with Me3SiN3 in the presence of two equivalents of [PPh4][N3]. The novel polyazido compounds were characterized by their vibrational spectra and their X‐ray crystal structures. Both anion structures provide experimental evidence for near‐linear M‐N‐N coordination of metal azides. The species [M(N3)4], [M(N3)5]? and [M(N3)6]2? (M=Ti, Zr, Hf) were studied by quantum chemical calculations at the electronic structure density functional theory and MP2 levels.  相似文献   

13.
Synthesis and Crystal Structure of (PPh4)2Se6 (PPh4)2Se6 has been prepared by the reaction of selenium with K2Se2 in dimethylformamide solution in the presence of K3[Mn(CN)6] and PPh4Br, forming black crystal needles. According to the crystal structure determination the compound consists of PPh+4 ions and chainlike hexaselenide ions. Space group P6 , Z = 2,4683 Observed unique reflections, R = 0.066. Lattice dimensions at ?90°C: a = 951.0, b = 1094.8, c = 2137.4 pm, α = 82.66°, β = 83.36°, γ = 89.96°.  相似文献   

14.
Chloro- and Polyselenoselenates(II): Synthesis, Structure, and Properties of [Ph3(C2H4OH)P]2[SeCl4] · MeCN, [Ph4P]2[Se2Cl6], and [Ph4P]2[Se(Se5)2] By symproportionation of elemental selenium and SeCl4 in polar protic solvents the novel chloroselenates(+II), [SeCl4]2? and [Se2Cl6]2?, could be stabilized; they were crystallized with voluminous organic cations. They were characterized from complete X-ray structure analysis. Yellow-orange [Ph3(C2H4OH)P]2[SeCl4] · MeCN (space group P1 , a = 10.535(4), b = 12.204(5), c = 16.845(6) Å, α = 77.09(3)°, β = 76.40(3)°, γ = 82.75(3)° at 140 K) contains in its crystal structure monomeric [SeCl4]2? anions with square-planar coordination of Se(+II). The mean Se? Cl bond length is 2.441 Å. In yellow [Ph4P]2[Se2Cl6] (space group P1 , a = 10.269(3), b = 10.836(4), c = 10.872(3) Å, α = 80.26(3)°, β = 79.84(2)°, γ = 72.21(3)° at 140 K) a dinuclear centrosymmetric [Se2Cl6]2? anion, also with square-planar coordinated Se(+II), is observed. The average terminal and bridging Se? Cl bond distances are 2.273 and 2.680 Å, respectively. From redox reactions of elemental Se with boranate/thiolate in ethanol/DMF the bis(pentaselenido)selenate(+II) anion [Se(Se5)2]2? was prepared as a novel type of a mixed-valent chalcogenide. In dark-red-brown [Ph4P]2[Se(Se5)2] (space group P21/n, a = 12.748(4), b = 14.659(5), c = 14.036(5) Å, β = 108.53(3)° at 140 K) centrosymmetric molecular [Se(Se5)2]2? anions with square-planar coordination of the central Se(+II) by two bidentate pentaselenide ligands is observed (mean Se? Se bond lengths: 2.658 Å at Se(+II), 2.322 Å in [Se5]2?). The resulting six-membered chelate rings with chair conformation are spirocyclically linked through the central Se(+II). The vibrational spectra of the new anions are reported.  相似文献   

15.
16.
17.
Bipy, Phen, and P(C6H4CH2NMe2‐2)3 in the Synthesis of Cationic Silver(I) Complexes; the Solid‐State Structures of [P(C6H4CH2NMe2‐2)3]AgOTf and [Ag(phen)2]OTf The reaction of [P(C6H4CH2NMe2‐2)3]AgX ( 1a , X = OTf; 1b , X = OClO3) with equimolar amounts of LcapL ( 2a , LcapL = 2, 2′‐bipyridine, bipy; 2b , LcapL = 4, 4′‐dimethyl‐2, 2′‐bipyridine, bipy′; 2c , LcapL = 1, 10‐phenanthroline, phen) leads to the formation of the cationic complexes {[P(C6H4CH2NMe2‐2)3]Ag(LcapL)}+X (LcapL = bipy: 3a , X = OTf; 3b , X = ClO4; LcapL = bipy′: 3c , X = OTf; 3d , X = ClO4; LcapL = phen: 3e , X = OTf; 3f , X = ClO4) in which the building blocks LcapL and P(C6H4CH2NMe2‐2)3 act as bidentate chelating ligands and are datively‐bound to the silver atom. Spectroscopic studies reveal that on the NMR time‐scale the phosphane group is dynamic with exchanging the respective Me2NCH2 built‐in arms. While complex 3e is stable in the solid‐state, it appeared that solutions of 3e start to decompose upon precipitation of colloidal silver when they are heated or irradiated with light, respectively. Appropriate work‐up of the reaction mixture allows the isolation of the phosphane P(C6H4CH2NMe2‐2)3 ( 5 ) along with [Ag(phen)2]OTf ( 4 ). The solid‐state structures of neutral 1a and cationic 4 are reported. Mononuclear 1a crystallizes in the monoclinic space group P21/c with the cell parameters a = 16.7763(2), b = 14.7892(2), c = 25.44130(10)Å, β = 106.1260(10), V = 6063.83(11)Å3 and Z = 4 with 8132 observed unique reflections (R1 = 0.0712), while 4 crystallizes in the monoclinic space group C2/c with the cell parameters a = 26.749(3), b = 7.1550(10), c = 26.077(3)Å, β = 113.503(2), V = 4576.8(10)Å3 and Z = 4 with 6209 observed unique reflections (R1 = 0.0481). The unit cell of 1a consists of two independent molecules. In both molecules the silver atom possesses a distorted tetrahedral coordination sphere and a boat‐like conformation for the six‐membered AgPNCH2C2/phenyl cycles is found. In 4 , as typical for 1a , the silver atom possesses the coordination number 4. The two phen ligands are tilted by 40.63°. The OTf group is acting as non‐coordinating counter ion.  相似文献   

18.
Preparation and Crystal Structures of Ag[N(CN)2](PPh3)2, Cu[N(CN)2](PPh3)2, and Ag[N(CN)2](PPh3)3 The coordination compounds Ag[N(CN)2](PPh3)2 ( 1 ), Cu[N(CN)2](PPh3)2 ( 2 ), and Ag[N(CN)2](PPh3)3 ( 3 ) are obtained by the reaction of AgN(CN)2 or CuN(CN)2 with triphenylphosphane in CH2Cl2. X‐ray structure determinations were performed on single crystals of 1 , 2 , and 3 · C6H5Cl. The three compounds crystallize monoclinic in the space group P21/n with the following unit cell parameters. 1 : a = 1216.07(9), b = 1299.5(2), c = 2148.4(3) pm, β = 99.689(13)°, Z = 4; 2 : a = 1369.22(10), b = 1257.29(5), c = 1888.04(15) pm, β = 94.395(7)°, Z = 4; 3 · C6H5Cl: a = 1276.6(4), b = 1971.7(3), c = 2141.3(5) pm, β = 98.50(3)°, Z = 4. In all structures the metal atoms have a distorted tetrahedral coordination. The crystal structure of 3 · C6H5Cl shows monomeric molecular units with terminal coordinated dicyanamide. The crystal structure of 1 is built up by dinuclear units, which are bridged by dicyanamide ligands. However, the crystal structure of 2 corresponds to a onedimensional coordination polymer, bridged by dicyanamide anions.  相似文献   

19.
20.
Chloroselenates(IV): Synthesis, Structure, and Properties of [As(C6H5)4]2Se2Cl10 and [As(C6H5)4]Se2Cl9 The Se2Cl102? and Se2Cl9? anions were prepared, as the first dinuclear haloselenates(IV), from the reaction of (SeCl4)4 with stoichiometric quantities of chloride ions in POCl3 solutions; they were isolated as yellow crystalline As(C6H5)4+ salts. Complete X-ray structural analyses at ?130°C of [As(C6H5)4]2Se2Cl10 ( 1 ) (space group P1 , a = 10.296(7), b = 11.271(6), c = 12.375(8) Å, = 74.17(5)°, α = 81.38(5)°, β = 67.69(4)°, V = 1276 Å3) and of [As(C6H5)4]Se2Cl9 ( 2 ) (space group P21/n, a = 12.397(5), b = 17.492(6), c = 14.235(4) Å, α 93.25(3)°, V = 3082 Å3) show in both cases two distorted octahedral SeCl6 groups connected through a common edge in 1 and a common face in 2 . The terminal Se? Cl bonds (average 2.317 Å in 1 , 2.223 Å in 2 ) are much shorter than the Se? Cl bridges (av. 2.661 Å in 1 , 2.652 Å in 2 ). The stereochemical activity of the SeIV lone electron pair causes severe distortion of the central Se2Cl2 ring in the centrosymmetric Se2Cl102? ion. The vibrational spectra of the anions are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号