首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Malaria chemotherapy is greatly threatened by the recent emergence and spread of resistance in the Plasmodium falciparum parasite against artemisinins and their partner drugs. Therefore, it is an urgent priority to develop new antimalarials. Plasmepsin V (PMV) is regarded as a superior drug target for its essential role in protein export. In this study, we performed virtual screening based on homology modeling of PMV structure, molecular docking and pharmacophore model analysis against a library with 1,535,478 compounds, which yielded 233 hits. Their antimalarial activities were assessed amongst four non-peptidomimetic compounds that demonstrated the promising inhibition of parasite growth, with mean IC50 values of 6.67 μM, 5.10 μM, 12.55 μM and 8.31 μM. No significant affection to the viability of L929 cells was detected in these candidates. These four compounds displayed strong binding activities with the PfPMV model through H-bond, hydrophobic, halogen bond or π-π interactions in molecular docking, with binding scores under −9.0 kcal/mol. The experimental validation of molecule-protein interaction identified the binding of four compounds with multiple plasmepsins; however, only compound 47 showed interaction with plasmepsin V, which exhibited the potential to be developed as an active PfPMV inhibitor.  相似文献   

2.
To verify the size and emergence time of new permeability pathways (NPPs) in malaria parasites, the permeability of the Plasmodium falciparum-infected erythrocytes was tested with different particle sizes of nanomaterials by flow cytometry assay. The results confirmed the permeability of the host cell membrane increases with parasite maturation for the stage-development evolution of NPPs, and especially found that a particle size of about 50 nm had higher efficiency. As a kind of the novel nanomaterials, nitrogen-doped carbon dots (NCDs) showed no toxicity, specificity binding ability to the malaria parasites, and could label live elder blood-stage P. falciparum through NPPs, indicating the potential application in cell imaging. NPPs and some nanomaterials such as NCDs deserve more attention and exploration for the elimination and prevention of malaria.  相似文献   

3.
COVID-19, a pandemic caused by the virus SARS-CoV-2, has spread globally, necessitating the search for antiviral compounds. Transmembrane protease serine 2 (TMPRSS2) is a cell surface protease that plays an essential role in SARS-CoV-2 infection. Therefore, researchers are searching for TMPRSS2 inhibitors that can be used for the treatment of COVID-19. As such, in this study, based on the crystal structure, we targeted the active site of TMPRSS2 for virtual screening of compounds in the FDA database. Then, we screened lumacaftor and ergotamine, which showed strong binding ability, using 100 ns molecular dynamics simulations to study the stability of the protein–ligand binding process, the flexibility of amino acid residues, and the formation of hydrogen bonds. Subsequently, we calculated the binding free energy of the protein–ligand complex by the MM-PBSA method. The results show that lumacaftor and ergotamine interact with residues around the TMPRSS2 active site, and reached equilibrium in the 100 ns molecular dynamics simulations. We think that lumacaftor and ergotamine, which we screened through in silico studies, can effectively inhibit the activity of TMPRSS2. Our findings provide a basis for subsequent in vitro experiments, having important implications for the development of effective anti-COVID-19 drugs.  相似文献   

4.
Aptamers, the nucleic acid analogs of antibodies, bind to their target molecules with remarkable specificity and sensitivity, making them promising diagnostic and therapeutic tools. The systematic evolution of ligands by exponential enrichment (SELEX) is time-consuming and expensive. However, regardless of those issues, it is the most used in vitro method for selecting aptamers. Therefore, recent studies have used computational approaches to reduce the time and cost associated with the synthesis and selection of aptamers. In an effort to present the potential of computational techniques in aptamer selection, a simple sequence-based method was used to design a 69-nucleotide long aptamer (mod_09) with a relatively stable structure (with a minimum free energy of −32.2 kcal/mol) and investigate its binding properties to the tyrosine kinase domain of the NT-3 growth factor receptor, for the first time, by employing computational modeling and docking tools.  相似文献   

5.
Plasmodium falciparum (Pf) like most other organisms, has a sophisticated antioxidant system, part of which includes glutathione reductase (GR). GR works by recycling toxic glutathione disulfide to glutathione, thereby reducing reactive oxygen species and making a form of glutathione (GSH) the parasite can use. Inhibition of this enzyme in Pf impedes parasite growth. In addition, it has been confirmed that PfGR is not identical to human GR. Thus, PfGR is an excellent target for antimalarial drug development. A functional assay utilizing liquid chromatography–mass spectrometry was developed to specifically identify and evaluate inhibitors of PfGR. Using recombinant PfGR enzyme and 1,4‐naphthoquinone (1) as a reference compound and 4‐nitrobenzothiadiazole (2) and methylene blue (3) as additional compounds, we quantified the concentration of GSH produced compared with a control to determine the inhibitory effect of these compounds. Our results coincide with that presented in literature: compounds 1–3 inhibit PfGR with IC50 values of 2.71, 8.38, and 19.23 µm , respectively. Good precision for this assay was exhibited by low values of intraday and interday coefficient of variation (3.1 and 2.4%, respectively). Thus, this assay can be used to screen for other potential inhibitors of PfGR quickly and accurately. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Current research on antimalarial protein kinases has provided an opportunity to design kinase-based antimalarial drugs. We have developed a common feature-based pharmacophore model from a set of multiple chemical scaffolds including derivatives of 3,6-imidazopyridazines, pyrazolo[2,3-d]pyrimidines and imidazo[1,5-a]pyrazines, in order to incorporate the maximum structural diversity information in the model for the Plasmodium falciparum calcium-dependent protein kinase-1 (PfCDPK-1) target. The best pharmacophore model (Hypo-1) with the essential features of two hydrogen bond donors (HBD), one hydrophobic aromatic (HYAr) and one ring aromatic (RA) showed the classification accuracies of 86.27%, 78.43% and 100.00% in labelling the training and test set (test set-1 and test set-2) compounds into more active and less active classes. In order to identify the crucial interaction between multiple scaffold ligands and the target protein, we first developed the homology model using a template structure of P. bergheii (PbCDPK1; PDB ID: 3Q5I), and thereafter performed the docking studies. The residues such as Lys85, Phe147, Tyr148, Leu198, Val211, and Asp212 were found to be the most important interacting residues for possessing PfCDPK-1 inhibitory activity.  相似文献   

7.
8.
Targeting the serine biosynthesis pathway enzymes has turned up as a novel strategy for anti-cancer therapeutics. 3- Phosphoglycerate dehydrogenase (PHGDH) is the rate-limiting enzyme that catalyzes the conversion of 3-Phosphoglyceric acid (3-PG) into 3-Phosphohydroxy pyruvate (3-PPyr) in the first step of serine synthesis pathway and perform a critical role in cancer progression. PHGDH has been reported to be overexpressed in different types of cancers and emerged as a novel target for cancer therapeutics. During this study, virtual screening tools were used for the identification of inhibitors of PHGDH. A library of phenolic compounds was docked against two binding sites of PHGDH using Molegro Virtual Docker (MVD) software. Out of 169 virtually tested compounds, Salvianolic acid C and Schizotenuin F possess good binding potential to co-factor binding site of PHGDH while Salvianolic acid I and Chicoric acid were identified as the best binding compounds toward the substrate binding site of PHGDH. The top selected compounds were evaluated for different physiochemical and ADMET properties, the obtained results showed that none of these hit compounds violated the Pfizer Rule and they possess acceptable ADMET profiles. Further, a commercially available hit compound, Chicoric acid, was evaluated for its anti-cancer potential against PHGDH-expressing gastric cancer cell lines (MGC-803 and SGC-7901) as well as cell lines with low expression of PHGDH (MCF-7 and MDA-MB2-31), which demonstrated that Chicoric acid possesses selective cytotoxicity toward PHGDH expressing cancer cell lines. Thus, this study has unveiled the potential of phenolic compounds, which could serve as novel candidates for the development of PHGDH inhibitors as anti-cancer agents.  相似文献   

9.
10.
Eg5 is a kinesin essential in bipolar spindle formation, overexpressed in tumours, thus representing a new target in cancer therapy. We aimed at evaluating the anti-cancer activity of Eg5 thiadiazoline inhibitors 2 and 41 on gastric adenocarcinoma cells (AGS), focusing on the modulation of angiogenic signalling. Docking studies confirmed a similar interaction with Eg5 to that of the parent compound K858. Thiadiazolines were also tested in combination with Hesperidin (HSD). Cell cycle analysis reveals a reduction of G1 and S phase percentages when 41 is administered as well as HSD in combination with K858. Western blot reveals Eg5 inhibitors capability to reduce PI3K, p-AKT/Akt and p-Erk/Erk expressions; p-Akt/Akt ratio is even more decreased in HSD+2 sample than the p-Erk/Erk ratio in HSD+41 or K858. VEGF expression is reduced when HSD+2 and HSD+41 are administered with respect to compounds alone, after 72 h. ANGPT2 gene expression increases in cells treated with 41 and HSD+2 compared to K858. The wound-healing assay highlights a reduction in the cut in HSD+2 sample compared to 2 and HSD. Thus, Eg5 inhibitors appear to modulate angiogenic signalling by controlling VEGF activity even better if combined with HSD. Overall, Eg5 inhibitors can represent a promising starting point to develop innovative anti-cancer strategies.  相似文献   

11.
The synthesis of a new series of peptidyl chloromethyl ketones such as MeOSuc-Ala-Ala-Pro-Ile-CH2Cl (AAPI) and MeOSuc-Ala-Ala-Ala-Pro-Ile-CH2Cl (AAAPI) is described.  相似文献   

12.
SARS-CoV-2 is highly homologous to SARS-CoV. To date, the main protease (Mpro) of SARS-CoV-2 is regarded as an important drug target for the treatment of Coronavirus Disease 2019 (COVID-19). Some experiments confirmed that several HIV protease inhibitors present the inhibitory effects on the replication of SARS-CoV-2 by inhibiting Mpro. However, the mechanism of action has still not been studied very clearly. In this work, the interaction mechanism of four HIV protease inhibitors Darunavir (DRV), Lopinavir (LPV), Nelfinavir (NFV), and Ritonavire (RTV) targeting SARS-CoV-2 Mpro was explored by applying docking, molecular dynamics (MD) simulations, and MM–GBSA methods using the broad-spectrum antiviral drug Ribavirin (RBV) as the negative and nonspecific control. Our results revealed that LPV, RTV, and NFV have higher binding affinities with Mpro, and they all interact with catalytic residues His41 and the other two key amino acids Met49 and Met165. Pharmacophore model analysis further revealed that the aromatic ring, hydrogen bond donor, and hydrophobic group are the essential infrastructure of Mpro inhibitors. Overall, this study applied computational simulation methods to study the interaction mechanism of HIV-1 protease inhibitors with SARS-CoV-2 Mpro, and the findings provide useful insights for the development of novel anti-SARS-CoV-2 agents for the treatment of COVID-19.  相似文献   

13.
Outbreaks of hand, foot, and mouth disease (HFMD) that occur worldwide are mainly caused by the Coxsackievirus-A16 (CV-A16) and Enterovirus-A71 (EV-A71). Unfortunately, neither an anti-HFMD drug nor a vaccine is currently available. Rupintrivir in phase II clinical trial candidate for rhinovirus showed highly potent antiviral activities against enteroviruses as an inhibitor for 3C protease (3Cpro). In the present study, we focused on designing 50 novel rupintrivir analogs against CV-A16 and EV-A71 3Cpro using computational tools. From their predicted binding affinities, the five compounds with functional group modifications at P1′, P2, P3, and P4 sites, namely P1′-1, P2-m3, P3-4, P4-5, and P4-19, could bind with both CV-A16 and EV-A71 3Cpro better than rupintrivir. Subsequently, these five analogs were studied by 500 ns molecular dynamics simulations. Among them, P2-m3, the derivative with meta-aminomethyl-benzyl group at the P2 site, showed the greatest potential to interact with the 3Cpro target by delivering the highest number of intermolecular hydrogen bonds and contact atoms. It formed the hydrogen bonds with L127 and K130 residues at the P2 site stronger than rupintrivir, supported by significantly lower MM/PB(GB)SA binding free energies. Elucidation of designed rupintrivir analogs in our study provides the basis for developing compounds that can be candidate compounds for further HFMD treatment.  相似文献   

14.
A possible inhibitor of proteases, which contains an indole core and an aromatic polar acetylene, was designed and synthesized. This indole derivative has a molecular architecture kindred to biologically relevant species and was obtained through five synthetic steps with an overall yield of 37% from the 2,2′-(phenylazanediyl)di(ethan-1-ol). The indole derivative was evaluated through docking assays using the main protease (SARS-CoV-2-Mpro) as a molecular target, which plays a key role in the replication process of this virus. Additionally, the indole derivative was evaluated as an inhibitor of the enzyme kallikrein 5 (KLK5), which is a serine protease that can be considered as an anticancer drug target.  相似文献   

15.
Diseases of the central nervous system are an alarming global problem showing an increasing prevalence. Dopamine receptor D2 (D2R) has been shown to be involved in central nervous system diseases. While different D2R-targeting drugs have been approved by the FDA, they all suffer from major drawbacks due to promiscuous receptor activity leading to adverse effects. Increasing the number of potential D2R-targeting drug candidates bears the possibility of discovering molecules with less severe side-effect profiles. In dire need of novel D2R ligands for drug development, combined in silico/in vitro approaches have been shown to be efficient strategies. In this study, in silico pharmacophore models were generated utilizing both ligand- and structure-based approaches. Subsequently, different databases were screened for novel D2R ligands. Selected virtual hits were investigated in vitro, quantifying their binding affinity towards D2R. This workflow successfully identified six novel D2R ligands exerting micro- to nanomolar (most active compound KI = 4.1 nM) activities. Thus, the four pharmacophore models showed prospective true-positive hit rates in between 4.5% and 12%. The developed workflow and identified ligands could aid in developing novel drug candidates for D2R-associated pathologies.  相似文献   

16.
SARS-CoV-2, or severe acute respiratory syndrome coronavirus 2, represents a new strain of Coronaviridae. In the closing 2019 to early 2020 months, the virus caused a global pandemic of COVID-19 disease. We performed a virtual screening study in order to identify potential inhibitors of the SARS-CoV-2 main viral protease (3CLpro or Mpro). For this purpose, we developed a novel approach using ensemble docking high-throughput virtual screening directly coupled with subsequent Linear Interaction Energy (LIE) calculations to maximize the conformational space sampling and to assess the binding affinity of identified inhibitors. A large database of small commercial compounds was prepared, and top-scoring hits were identified with two compounds singled out, namely 1-[(R)-2-(1,3-benzimidazol-2-yl)-1-pyrrolidinyl]-2-(4-methyl-1,4-diazepan-1-yl)-1-ethanone and [({(S)-1-[(1H-indol-2-yl)methyl]-3-pyrrolidinyl}methyl)amino](5-methyl-2H-pyrazol-3-yl)formaldehyde. Moreover, we obtained a favorable binding free energy of the identified compounds, and using contact analysis we confirmed their stable binding modes in the 3CLpro active site. These compounds will facilitate further 3CLpro inhibitor design.  相似文献   

17.
The stem cell factor receptor (c‐Kit) has been known to play critical roles in regulating numerous aspects of cellular behavior including cell growth, differentiation, migration and metabolism. In this investigation, a three‐dimensional pharmacophore model of c‐Kit inhibitors has been established by using the HypoGen algorithms implemented in the catalyst software package. The best quantitative pharmacophore model, hypothesis 1, which has the highest correlation coefficient (0.989), consists of one hydrogen bond acceptor, two hydrogen bond donors and one hydrophobic feature. To our knowledge, this is the first report on the pharmacophore modeling study of c‐Kit inhibitors. The best hypothesis, hypothesis 1, was used to screen molecular structural databases, including Specs and China Natural Products Database for potential lead compounds. The hit compounds were subsequently subjected to filtering by Lipinski's rules and docking study to refine the retrieved hits and as a result to reduce the rate of false positive. Finally 28 compounds were purchased or synthesized for further in vitro assay against several human tumour cell lines including A549, MCF‐7, HepG2 and PC‐3, in which c‐Kit is overexpressed. Two compounds show very low micromolar inhibition potency against the PC‐3 and HepG2 cell lines respectively. And they were selected for further modification and testing.  相似文献   

18.
The completion of the Human Genome Project, the growing effort on proteomics, and the Structural Genomics Initiative have recently intensified the attention being paid to reliable computer docking programs able to identify molecules that can affect the function of a macromolecule through molecular complexation. We report herein an automated computer docking program, EUDOC, for prediction of ligand-receptor complexes from 3D receptor structures, including metalloproteins, and for identification of a subset enriched in drug leads from chemical databases. This program was evaluated from the standpoints of force field and sampling issues using 154 experimentally determined ligand-receptor complexes and four "real-life" applications of the EUDOC program. The results provide evidence for the reliability and accuracy of the EUDOC program. In addition, key principles underlying molecular recognition, and the effects of structural water molecules in the active site and different atomic charge models on docking results are discussed. Copyright 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1750-1771, 2001  相似文献   

19.
20.
Lung cancer is one of the most common causes of cancer-related deaths worldwide. Monoamine Oxidase-A (MAO-A) enzyme mediates the production of reactive oxygen species (ROS) that trigger DNA damage and oxidative injury of cells resulting in tumor initiation and progression. Available MAO-A inhibitors are used as antidepressants, however, their role as anticancer agents is still under investigation. Ligand- and structure-based drug design approaches guided the discovery and development of novel MAO-A inhibitors. A series of 1H indole-2-carboxamide derivatives was prepared and characterized using 1H-NMR, 13C-NMR, and IR. The antiproliferative effects of MAO-A inhibitors were evaluated using the cell viability assay (MTT), and MAO-A activity was evaluated using MAO-A activity assay. The presumed inhibitors significantly inhibited the growth of lung cell lines in a dose- and time dependent manner. The half maximal inhibitory concentration (IC50) values of MAO-A inhibitors (S1, S2, S4, S7, and S10) were 33.37, 146.1, 208.99, 307.7, and 147.2 µM, respectively, in A549. Glide docking against MAO-A showed that the derivatives accommodate MAO-A binding cleft and engage with key binding residues. MAO-A inhibitors provide significant and consistent evidence on MAO-A activity in lung cancer and present a potential target for the development of new chemotherapeutic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号