首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 402 毫秒
1.
The turbulent flow in a compound meandering channel with a rectangular cross section is one of the most complicated turbulent flows, because the flow behaviour is influenced by several kinds of forces, including centrifugal forces, pressure‐driven forces and shear stresses generated by momentum transfer between the main channel and the flood plain. Numerical analysis has been performed for the fully developed turbulent flow in a compound meandering open‐channel flow using an algebraic Reynolds stress model. The boundary‐fitted coordinate system is introduced as a method for coordinate transformation in order to set the boundary conditions along the complicated shape of the meandering open channel. The turbulence model consists of transport equations for turbulent energy and dissipation, in conjunction with an algebraic stress model based on the Reynolds stress transport equations. With reference to the pressure–strain term, we have made use of a modified pressure–strain term. The boundary condition of the fluctuating vertical velocity is set to zero not only for the free surface, but also for computational grid points next to the free surface, because experimental results have shown that the fluctuating vertical velocity approaches zero near the free surface. In order to examine the validity of the present numerical method and the turbulent model, the calculated results are compared with experimental data measured by laser Doppler anemometer. In addition, the compound meandering open channel is clarified somewhat based on the calculated results. As a result of the analysis, the present algebraic Reynolds stress model is shown to be able to reasonably predict the turbulent flow in a compound meandering open channel. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
A flow model is presented for predicting a hydraulic jump in a straight open channel. The model is based on the general 2D shallow water equations in strong conservation form, without artificial viscosity, which is usually incorporated into the flow equations to capture a hydraulic jump. The equations are discretised using the finite volume method. The results are compared with experimental data and available numerical results, and have shown that the present model can provide good results. The model is simple and easy to implement. To demonstrate the potential application of the model, several hydraulic jumps occurring in different situations are simulated, and the predictions are in good agreement with standard solution for open channel hydraulics. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
Numerical and experimental analyses are performed on a supersonic air ejector to evaluate the effectiveness of commonly-used computational techniques when predicting ejector flow characteristics. Three series of experimental curves at different operating conditions are compared with 2D and 3D simulations using RANS, steady, wall-resolved models. Four different turbulence models are tested: kε, kε realizable, kω SST, and the stress–ω Reynolds Stress Model. An extensive analysis is performed to interpret the differences between numerical and experimental results. The results show that while differences between turbulence models are typically small with respect to the prediction of global parameters such as ejector inlet mass flow rates and Mass Entrainment Ratio (MER), the kω SST model generally performs best whereas ε-based models are more accurate at low motive pressures. Good agreement is found across all 2D and 3D models at on-design conditions. However, prediction at off-design conditions is only acceptable with 3D models, making 3D simulations mandatory to correctly predict the critical pressure and achieve reasonable results at off-design conditions. This may partly depend on the specific geometry under consideration, which in the present study has a rectangular cross section with low aspect ratio.  相似文献   

4.
5.
The results of an investigation on the interference effects of the tandem square cylinders exposed to a uniform flow are presented in this paper. Time-dependent and three-dimensional flow simulations are carried out using large eddy simulation with a one-equation subgrid model. An incompressible three-dimensional finite volume code with a collocated grid arrangement is used for solving filtered Navier–Stokes equations. These equations are solved with an implicit fractional two-step method. Simulations are conducted with different Reynolds numbers between 103 and 105. The longitudinal spacing between the cylinders is selected 4D for the chosen Reynolds numbers, where D is the side of the cylinders. Also the effect of the spacing between cylinders, ranging from 1D to 12D, is studied for the selected Reynolds numbers. The instantaneous flow field is studied by analyzing the vortices, pressure, streamlines and Q-criterion to assist understanding of the various flow patterns, vortical structures and Kelvin–Helmholtz vortices in the separating shear layers. The hysteresis is observed in a certain range of the gap spacing, which this range depends on the selected Reynolds number. The global results are also computed and compared with available experimental results. The results indicate that there is a satisfactory agreement between the predictions and available experimental data considering the fine grid adopted.  相似文献   

6.
A Reynolds stress model for the numerical simulation of uniform 3D turbulent open‐channel flows is described. The finite volume method is used for the numerical solution of the flow equations and transport equations of the Reynolds stress components. The overall solution strategy is the SIMPLER algorithm, and the power‐law scheme is used to discretize the convection and diffusion terms in the governing equations. The developed model is applied to a flow at a Reynolds number of 77000 in a rectangular channel with a width to depth ratio of 2. The simulated mean flow and turbulence structures are compared with measured and computed data from the literature. The computed flow vectors in the plane normal to the streamwise direction show a small vortex, called inner secondary currents, located at the juncture of the sidewall and the free surface as well as the free surface and bottom vortices. This small vortex causes a significant increase in the wall shear stress in the vicinity of the free surface. A budget analysis of the streamwise vorticity is carried out. It is found that both production terms by anisotropy of Reynolds normal stress and by Reynolds shear stress contribute to the generation of secondary currents. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
The steady-state laminar mixed convection of a binary gas mixture in a parallel-plate channel is investigated. The channel walls are subjected to different combinations of first-type thermal and solutal boundary conditions and different wall inclinations have been considered. A second-order accurate control-volume based numerical scheme is used for the resolution. In parallel with the numerical investigation, the governing conservation equations are also simplified for fully developed conditions and are shown to be controlled by a single parameter. An exact analytical solution is obtained for the main flow variables and transfer rates and serves as a validation tool for the numerical model. In addition, it establishes a criterion based on the two Grashof numbers, the Reynolds number and the channel inclination for the existence of a reversed flow.  相似文献   

8.
9.
Unsteady flow and heat transfer from a horizontal isothermal square cylinder is studied numerically using a three-dimensional computational model to investigate the influence of buoyancy on the forced flow and heat transfer characteristics. The numerical model is based on a horizontal square cylinder subjected to laminar fluid flow in an unconfined channel. The governing equations in 3D form are solved using a fractional step method based on the finite difference discretization in addition to a Crank–Nicholson scheme employed to the convective and the viscous terms. Two working fluids–air (Pr = 0.7) and water (Pr = 7)–are considered, and the flow and heat transfer simulations were carried out for the Reynolds and Richardson numbers in the intervals 55 ≤ Re ≤ 250 and 0 ≤ Ri ≤ 2, respectively. The flow characteristics such as time-averaged drag/lift, rms drag/rms lift coefficients as well as Strouhal number were computed. The heat transfer from the cylinder is assessed by mean Nusselt number (and rms Nusselt number) over the total heated cylinder walls. As the buoyancy increases, the mass and the velocity of the fluid flowing underneath the cylinder increases. The fluid is injected into the near wake region with an upward motion which significantly alters the flow field in the downstream as well as upstream regions. The effects of Reynolds, Richardson and Prandtl numbers on the flow field and temperature distributions are discussed in detail. It is shown that the flow and heat transfer characteristics are influenced more for air than water. To fill the void in the literature, useful empirical correlations of practical importance are derived for pure forced and pure natural as well as mixed convection. The mixed convection correlations, in terms of the ratio of pure forced convection, are also developed, and their implications are discussed.  相似文献   

10.
11.
This work presents computational fluid dynamics (CFD) simulations of single-phase and two-phase flow. The droplets are injected in annular heated air tube. The numerical simulation is performed by using a commercial CFD code witch uses the finite-volume method to discretize the equations of fluid flow. The Reynolds-averaged Navier–Stokes equations with Reynolds stress model were used in the computation. The governing equations are solved by using a SIMPLE algorithm to treat the pressure terms in the momentum equations. The results of prediction are compared with the experimental data.  相似文献   

12.
An implicit two-equation turbulence solver, KEM. in generalized co-ordinates, is used in conjunction with the three-dimensional incompressible Navier–Stokes solver, INS3D, to calculate the internal flow in a channel and a channel with a sudden 2:3 expansion. A new and consistent boundary procedure for a low Reynolds number form of the κ-ε turbulence model is chosen to integrate the equations up to the wall. The high Reynolds number form of the equations is integrated using wall functions. The latter approach yields a faster convergence to the steady-state solution than the former. For the case of channel flow, both the wall-function and wall-boundary-condition approaches yield results in good agreement with the experimental data. The back-step (sudden expansion) flow is calculated using the wall-function approach. The predictions are in reasonable agreement with the experimental data.  相似文献   

13.
This article develops a parallel large-eddy simulation (LES) with a one-equation subgrid-scale (SGS) model based on the Galerkin finite element method and three-dimensional (3D) brick elements. The governing filtered Navier–Stokes equations were solved by a second-order accurate fractional-step method, which decomposed the implicit velocity–pressure coupling in incompressible flow and segregated the solution to the advection and diffusion terms. The transport equation for the SGS turbulent kinetic energy was solved to calculate the SGS processes. This FEM LES model was applied to study the turbulence of the benchmark open channel flow at a Reynolds number Reτ = 180 (based on the friction velocity and channel height) using different model constants and grid resolutions. By comparing the turbulence statistics calculated by the current model with those obtained from direct numerical simulation (DNS) and experiments in literature, an optimum set of model constants for the current FEM LES model was established. The budgets of turbulent kinetic energy and vertical Reynolds stress were then analysed for the open channel flow. Finally, the flow structures were visualised to further reveal some important characteristics. It was demonstrated that the current model with the optimum model constants can predict well the organised structure near the wall and free surface, and can be further applied to other fundamental and engineering applications.  相似文献   

14.
Systematic tests have been performed to study the behaviour of a numerical method developed to calculate 2D, steady free surface flows. The Reynolds equations are solved in the physical space by employing a non–orthogonal staggered grid, while the k-ε model is adopted to approximate the Reynolds stresses. The free surface is calculated following an iterative procedure and various parameters that affect convergence and accuracy of the numerical solution have been examined. Calculated results are compared with measured data for two cases, i.e. the wave generation above a bottom topography at various Froude numbers and the free surface formation above a submerged hydrofoil. © 1997 John Wiley & Sons, Ltd.  相似文献   

15.
A numerical investigation of laminar flow over a three-dimensional backward-facing step is presented with comparisons with detailed experimental data, available in the literature, serving to validate the numerical results. The continuity constraint method, implemented via a finite element weak statement, was employed to solve the unsteady three-dimensional Navier–Stokes equations for incompressible laminar isothermal flow. Two-dimensional numerical simulations of this step geometry underestimate the experimentally determined extent of the primary separation region for Reynolds numbers Re greater than 400. It has been postulated that this disagreement between physical and computational experiments is due to the onset of three-dimensional flow near Re ≈ 400. This paper presents a full three-dimensional simulation of the step geometry for 100⩽ Re⩽ 800 and correctly predicts the primary reattachment lengths, thus confirming the influence of three-dimensionality. Previous numerical studies have discussed possible instability modes which could induce a sudden onset of three-dimensional flow at certain critical Reynolds numbers. The current study explores the influence of the sidewall on the development of three-dimensional flow for Re greater than 400. Of particular interest is the characterization of three-dimensional vortices in the primary separation region immediately downstream of the step. The complex interaction of a wall jet, located at the step plane near the sidewall, with the mainstream flow reveals a mechanism for the increasing penetration (with increasing Reynolds number) of three-dimensional flow structures into a region of essentially two-dimensional flow near the midplane of the channel. The character and extent of the sidewall-induced flow are investigated for 100⩽Re⩽ 800. © 1997 John Wiley & Sons, Ltd.  相似文献   

16.
The governing equations for axially symmetric flow, where the Reynolds stresses are expressed by scalar turbulent viscosity, are the Reynolds equations. The turbulence model k, ? is used in the well-known form for fully developed turbulent flow.The numerical method, a continuation of the MAC system1, is adapted so that even for high Reynolds cell numbers precision (δx2) can be achieved for the steady flow. Irregular cells join the rectangular network on the curved surface. Von Neumann's stability condition of the linearised numerical system is investigated. Special problems concerning the numerical solution of the turbulence model equations are stated and a special procedure is worked out to ensure that the fields k, ? do not converge to physically meaningless values. The program for the computer is universal in that the boundary problems can be assigned by input data.As an example, an axially symmetrical diffuser with an area ratio of widening 1.40 is computed. Fields of velocity and pressure at the wall as well as fields vT and k are assessed. The results are compared with an experiment. The conclusion is that this method is suitable for the problems mentioned in this study as well as for unsteady flow.  相似文献   

17.
In this work the capabilities of a high-order Discontinuous Galerkin (DG) method applied to the computation of turbomachinery flows are investigated. The Reynolds averaged Navier–Stokes equations coupled with the two equations k-ω turbulence model are solved to predict the flow features, either in a fixed or rotating reference frame, to simulate the fluid flow around bodies that operate under an imposed steady rotation. To ensure, by design, the positivity of all thermodynamic variables at a discrete level, a set of primitive variables based on pressure and temperature logarithms is used. The flow fields through the MTU T106A low-pressure turbine cascade and the NASA Rotor 37 axial compressor have been computed up to fourth-order of accuracy and compared to the experimental and numerical data available in the literature.  相似文献   

18.
This article presents a numerical investigation of turbulent flow in an axisymmetric separated and reattached flow over a longitudinal blunt circular cylinder. The governing equations were discretized by the finite-volume method and SIMPLER method was applied to solve the equations on a staggered grid. The turbulent flow was numerically simulated using the standard k–ε, Abe–Kondoh–Nagano (AKN) and Shear Stress Transport (SST) turbulence models. The comparisons made between numerical results and experimental measurements showed that the SST model is superior to other models in the present calculation.Computations were performed for three different Reynolds numbers of 6000, 10 000 and 20 000 based on the cylinder diameter. To our knowledge, this study represents the first numerical investigation of the present flow configuration. The computational results were validated with the available experimental data of reattachment length, mean velocity distribution and wall static pressure coefficient in the turbulent blunt circular cylinder flows. Further, other characteristics of the flow, such as turbulent kinetic energy, pressure, streamlines, and the velocity vectors are discussed.The results show that the main characteristics of the turbulence flow in the separation region, such as reattachment length or velocity profiles, are nearly independent of the Reynolds number. The obtained results showed that a secondary separation bubble may appear in the main separation bubble near the leading edge. Furthermore, it was found that the turbulent kinetic energy has a large effect on the formation of the secondary bubble.  相似文献   

19.
The paper describes the validation of a newly developed very LES (VLES) method for the simulation of turbulent separated flow. The new VLES method is a unified simulation approach that can change seamlessly from Reynolds‐averaged Navier–Stokes to DNS depending on the numerical resolution. Four complex test cases are selected to validate the performance of the new method, that is, the flow past a square cylinder at Re = 3000 confined in a channel (with a blockage ratio of 20%), the turbulent flow over a circular cylinder at Re = 3900 as well as Re = 140,000, and a turbulent backward‐facing step flow with a thick incoming boundary layer at Re = 40,000. The simulation results are compared with available experimental, LES, and detached eddy simulation‐type results. The new VLES model performs well overall, and the predictions are satisfactory compared with previous experimental and numerical results. It is observed that the new VLES method is quite efficient for the turbulent flow simulations; that is, good predictions can be obtained using a quite coarse mesh compared with the previous LES method. Discussions of the implementation of the present VLES modeling are also conducted on the basis of the simulations of turbulent channel flow up to high Reynolds number of Reτ = 4000. The efficiency of the present VLES modeling is also observed in the channel flow simulation. From a practical point of view, this new method has considerable potential for more complex turbulent flow simulations at relative high Reynolds numbers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A numerical code has been implemented for the numerical solution of the steady, incompressible Navier–Stokes equations using primitive variables in a bifurcating channel. A boundary-fitted, numerically generated grid is placed onto the domain of the channel which is transformed into either a rectilinear C- or T-shaped region. The differenced equations are solved using Newton's iteration which makes upwinding at high Reynolds number unnecessary. Practical implications of inverting the huge Jacobian matrix of Newton's method are discussed. The results have relative error of 2–3 × 10?3 at Reynolds number 100, with T-geometry being marginally but significantly more accurate than C-geometry. Results have been obtained for Reynolds numbers up to 1000 for three bifurcations one of which models the carotid arterial bifurcation in the human head. For this latter bifurcation the wall shear stress is calculated in connection with the onset of atherosclerosis. Finally, the results of flows having different daughter tube end pressures are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号