首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A linear stability analysis was performed in order to study the onset of thermal convection in the presence of a strong viscosity variation, with a special emphasis on the condition for the stagnant-lid (ST) convection where a convection takes place only in a sublayer beneath a highly viscous lid of cold fluid. We consider the temporal evolution (growth or decay) of an infinitesimal perturbation superimposed to a Boussinesq fluid with an infinite Prandtl number which is in a static (motionless) and conductive state in a basally heated planar layer or spherical shell. The viscosity of the fluid is assumed to be exponentially dependent on temperature. The linearized equations for conservations of mass, momentum, and internal (thermal) energy are numerically solved for the critical Rayleigh number, Ra c , as well as the radial profiles of eigenfunctions for infinitesimal perturbations. The above calculations are repeatedly carried out by systematically varying (i) the magnitude of the temperature dependence of viscosity, E, and (ii) the ratio of the inner and outer radii of the spherical shell, γ. A careful analysis of the vertical structure of incipient flows demonstrated that the dominance of the ST convection can be quantitatively identified by the vertical profile of Δ h (a measure of conversion between horizontal and vertical flows), regardless of the model geometries. We also found that, in the spherical shell relevant to the Earth’s mantle (γ = 0.55), the transition into ST convection takes place at the viscosity contrast across the layer ${r_\eta\simeq10^4}$ . Taken together with the fact that the threshold value of r η falls in the range of r η for a so-called sluggish-lid convection, our finding suggests that the ST-mode of convection with horizontally elongated convection cells is likely to arise in the Earth’s mantle solely from the temperature-dependent viscosity.  相似文献   

2.
Natural convection flow in cavities with insulated top and bottom and heated and cooled walls is known to exhibit travelling wave instabilities in the thermal boundary layers that form on the walls. In water (Pr = 7.5) at Rayleigh number Ra = 6 × 108, these waves have been observed at start-up. However no such waves have been observed for the fully developed flow, although it may be assumed that the stability character of the boundary layers is at least approximately the same. The start-up waves are generated by perturbations to the system. In the present paper, an artificial perturbation is applied to the system to determine the stability character of the boundary layers in fully developed flow. It is shown that the thermal boundary layers in the fully developed flow have approximately the same stability character as the start-up flow.  相似文献   

3.
The problem of penetrative convection in a fluid saturated porous medium heated internally is analysed. The linear instability theory and nonlinear energy theory are derived and then tested using three dimensions simulation.Critical Rayleigh numbers are obtained numerically for the case of a uniform heat source in a layer with two fixed surfaces. The validity of both the linear instability and global nonlinear energy stability thresholds are tested using a three dimensional simulation. Our results show that the linear threshold accurately predicts the onset of instability in the basic steady state. However, the required time to arrive at the basic steady state increases significantly as the Rayleigh number tends to the linear threshold.  相似文献   

4.
5.
This paper considers the onset of free convection in a horizontal fluid-saturated porous layer with uniform heat generation. Attention is focused on cases where the fluid and solid phases are not in local thermal equilibrium, and where two energy equations describe the evolution of the temperature of each phase. Standard linearized stability theory is used to determine how the criterion for the onset of convection varies with the inter-phase heat transfer coefficient, H, and the porosity-modified thermal conductivity ratio, γ. We also present asymptotic solutions for small values of H. Excellent agreement is obtained between the asymptotic and the numerical results.  相似文献   

6.
Temperature decay in sealed rockbeds has been recorded. The rockbeds lost energy through the top surface and the results indicated that different natural convective flows occurred in beds of fixed depth and rock size but different lateral dimensions. However, the different flows had no effect on the mean power density dissipated through the top of the beds. A simple numerical conduction model based on the power integral method was used to calculate the temperature decay. The experimental results suggested that an insulated porous lower boundary was appropriate for the model and this gave the best agreement with the experiments.  相似文献   

7.
8.
自然对流边界层中湍流的发生   总被引:1,自引:0,他引:1  
颜大椿  张汉勋 《力学学报》2003,35(6):641-649
自然对流边界层中从层流到湍流的转捩经历了浮力振型、无摩擦振型和黏性振型的三重流动不稳定性相继产生的前转捩过程,以及近壁迅速出现强湍流源,随之平缓地向自模拟的湍流边界层过渡的热转捩过程.浮力振型在修正Grashof数G>40时开始失稳并成为主要振型,在振幅分布中3种振型的临界层位置处出现3个峰值;在G>100时浮力振型消失,无摩擦振型失稳并成为主要振型,振幅分布中在近壁区还出现黏性振型的峰值;在G>170时无摩擦振型经非线性演化在外层形成较弱的湍流,但内层黏性应力仍远高于湍流应力,振幅分布中仅有与黏性振型相应的峰值,在频谱中黏性振型的基频、第一、第二、第三阶亚谐频随G的增加相继出现,此时黏性不稳定波的高频成分已转化为湍流,但低频成分仍按线性规律增长,直至湍流惯性子区开始形成;至G>800时黏性振型消失,并在G=850附近时近壁区出现强湍流源,湍流应力、湍能产生项和近壁湍流热流率剧增.在热转捩后期,湍流应力和湍能产生项明显下降,流动在内外层趋于平衡.  相似文献   

9.
Heat transfer enhancement in horizontal annuli using variable properties of Al2O3–water nanofluid is investigated. Different viscosity and thermal conductivity models are used to evaluate heat transfer enhancement in the annulus. The base case uses the Chon et al. expression for conductivity and the Nguyen et al. experimental data for viscosity which take into account the dependence of these properties on temperature and nanoparticle volume fraction. It was observed that for Ra  104, the average Nusselt number was reduced by increasing the volume fraction of nanoparticles. However, for Ra = 103, the average Nusselt number increased by increasing the volume fraction of nanoparticles. For Ra  104, the Nusselt number was deteriorated every where around the cylinder surface especially at high expansion ratio. However, this reduction is only restricted to certain regions around the cylinder surface at Ra = 103. For Ra  104, the difference in Nusselt number between the Maxwell Garnett and Chon et al. model prediction is small. But, there was a deviation in prediction at Ra = 103 and this deviation becomes more significant at high volume fraction of nanoparticles. The Nguyen et al. data and Brinkman model gives completely different predictions for Ra  104 where the difference in prediction of Nusselt number reached 30%. However, this difference was less than 10% at Ra = 103.  相似文献   

10.
Chaotic phenomena in the wake of thermal convection flow fields above a heating flat plate were investigated experimentally. A newly developed electron beam fluorescence technique (EBF) was used to simultaneously measure density fluctuation at 7 points in a cross section above the plate. Correlation dimensions, intermittence coefficients, Fourier spectrum have been obtained for different Grashof numbers. Spatial distribution of correlation dimensions are presented. The experimental result shows that there is a certain relationship between the density fluctuation and theGr number. And time-spacial characteristic of chaos evolution is also given. The project supported by the National Natural Science Foundation of China  相似文献   

11.
Based on the differential equation of the nonlinear bending of shallow sphericalshells with variable thickness under axisymmetrical loads,this paper studies thenumerical solution of the nonlinear differential equation by means of interpolatingmatrix method.The analysis of the results indicates that the suggested method is easyto implement and obtains the same high accuracy for both the displacements and theinternal forces.  相似文献   

12.
A theoretical analysis of buoyancy-driven instability under transient basic fields is conducted in an initially quiescent, fluid-saturated, horizontal porous layer. Darcy’s law is used to explain characteristics of fluid motion and the anisotropy of permeability is considered. Under the Boussinesq approximation and the principle of exchange of stabilities, the stability equations are derived by using the linear stability theory and the energy method. The linear stability equations are analyzed numerically by using the frozen-time model and the linear amplification theory and the global stability limits are obtained numerically from the energy method. For the various anisotropic ratios, the critical times are predicted as a function of the Darcy–Rayleigh number and the critical Darcy–Rayleigh number is also obtained. The present predictions are compared each another and with existing theoretical ones.  相似文献   

13.
Based on the two-energy equation model, taking into account viscous dissipation due to the interaction between solid skeleton and pore fluid flow, temperature expressions of the solid skeleton and pore fluid flow are obtained analytically for the thermally developing forced convection in a saturated porous medium parallel plate channel, with walls being at constant temperature. It is proved that the temperatures of the two phases for the local thermal nonequilibrium approach to the temperature derived from the one-energy equation model for the local thermal equilibrium when the heat exchange coefficient goes to infinite. The temperature profiles are shown in figures for different dimensionless parameters and the effects of the parameters on the local thermal nonequilibrium are revealed by parameter study.  相似文献   

14.
In this work, the immersed element‐free Galerkin method (IEFGM) is proposed for the solution of fluid–structure interaction (FSI) problems. In this technique, the FSI is represented as a volumetric force in the momentum equations. In IEFGM, a Lagrangian solid domain moves on top of an Eulerian fluid domain that spans over the entire computational region. The fluid domain is modeled using the finite element method and the solid domain is modeled using the element‐free Galerkin method. The continuity between the solid and fluid domains is satisfied by means of a local approximation, in the vicinity of the solid domain, of the velocity field and the FSI force. Such an approximation is achieved using the moving least‐squares technique. The method was applied to simulate the motion of a deformable disk moving in a viscous fluid due to the action of the gravitational force and the thermal convection of the fluid. An analysis of the main factors affecting the shape and trajectory of the solid body is presented. The method shows a distinct advantage for simulating FSI problems with highly deformable solids. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
16.
The effects of thermal dispersion and thermal stratification on mixed convection about a vertical surface in a porous medium are studied. The conservation equations that govern the problem are reduced to a system of nonlinear ordinary differential equations. The resulting equations are solved on the basis of the local similarity approximation. The results indicate that both dispersion and stratification effects have considerable influence on the heat transfer rate.  相似文献   

17.
A fully three‐dimensional solution of the magneto‐convection equations—the nonlinearly coupled momentum, induction and temperature equations—is presented in spherical geometry. Two very different methods for solving the momentum equation are presented, corresponding to the limits of slow and rapid rotation, and their relative advantages and disadvantages are discussed. The possibility of including a freely rotating, finitely conducting inner core in the solution of the momentum and induction equations is also discussed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
采用局部非热平衡模型,在方腔左侧壁面温度正弦波变化、右侧壁面温度均一的边界条件下,通过SIM-PLER算法数值研究了固体骨架发热多孔介质方腔内的稳态非达西自然对流,主要探讨了不同正弦波波动参数N及方腔的高宽比M/L对方腔内自然对流与传热的影响规律。计算结果表明:正弦波温度边界使得方腔内的流场出现了复杂的变化,流体及固体区域左侧壁面附近出现了周期性的正负变化的温度场分布,左侧壁面局部Nusselt数出现了周期性的震荡现象;存在一个最佳温度波动参数N=1,此时多孔介质方腔内的整体散热量达到最大值;增加方腔高宽比会显著地削弱方腔内的自然对流传热过程,小高宽比也会在一定的程度上削弱多孔介质方腔内的对流传热。  相似文献   

19.
The free-parameter perturbation method is applied to solve the problems of nonlinear stability of spherical shallow shells under uniform load. As a modified perturbation method, the free-parameter perturbation method enables researchers to obtain all characteristic relations without choosing the certain perturbation parameter. Some examples were discussed to study the variety regulations of deflections and stress of shells in the process of buckling, and the results were compared with those of other researchers.  相似文献   

20.
Experimental results are presented on natural convection in a spherical shell of inner and outer radii r 1 = 14 mm and r 2 = 35 mm, with the inner sphere cooled and the outer sphere heated. The fluids filling the shell are two different silicon oils having Prandtl numbers 39 and 233. Both spheres are fixed together and can be rotated. In the studied regime, both Coriolis and centrifugal forces become significant. For sufficiently small Rayleigh numbers the resulting flow pattern is axisymmetric and steady, consisting of a plume descending from the south pole of the inner sphere, and returning in the equatorial regions. For greater Rayleigh numbers the flow becomes non-axisymmetric, with azimuthal modes m = 2 to 4 arising. We map out the critical Rayleigh number for the onset of these different modes, and consider how they vary with increasingly rapid overall rotation. Detailed flow measurements are done by converting a standard 2D particle image velocimetry system into a scanning quasi-3D PIV system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号