首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trichlorfon has the capacity to catalyze the oxidation of benzidine (4,4′-diamino-biphenyl) to 4-amino-4′-nitro biphenyl in the presence of sodium perborate. The product of the catalyzed reaction was validated by LC-MS method. Reversed-phase high performance liquid chromatography with 365 nm UV detection was used for separation and quantification of 4-amino-4′-nitro biphenyl. It can be proven there is a linear relationship between the peak areas of 4-amino-4′-nitro biphenyl and trichlorfon in the concentration range of 0.02-0.5 mg L−1 (r = 0.9988). Limit of detection was 2.0 μg L−1. A method for the indirect determination of trichlorfon using HPLC was developed based on catalytic effect of trichlorfon. Method validation was performed on samples spiked at three levels (0.5, 1.0, 1.5 mg kg−1), the recoveries ranged from 67.5 to 82.1%, with relative standard deviations between 4.5 and 7.3%.0.01 mol L−1 sodium dodecyl sulphate (SDS) solution was used to extract trichlorfon from samples and solid-phase extraction was used to isolate and concentrate trichlorfon in SDS solution. The recoveries of trichlorfon obtained with percolating the extraction through a SPE system were essentially in agreement with those obtained by liquid-liquid extraction. This new isolation technique decreases the use of toxic solvents and satisfies the requirements of Green Analytical Chemistry.  相似文献   

2.
4-Amino-4′-nitrobiphenyl, which is formed by catalytic effect of trichlorfon on sodium perborate oxidizing benzidine, is extracted with a cloud point extraction method and then detected using a high performance liquid chromatography with ultraviolet detection (HPLC-UV). Under the optimum experimental conditions, there was a linear relationship between trichlorfon in the concentration range of 0.01-0.2 mg L−1 and the peak areas of 4-amino-4′-nitrobiphenyl (r = 0.996). Limit of detection was 2.0 μg L−1, recoveries of spiked water and cabbage samples ranged between 95.4-103 and 85.2-91.2%, respectively. It was proved that the cloud point extraction (CPE) method was simple, cheap, and environment friendly than extraction with organic solvents and had more effective extraction yield.  相似文献   

3.
Trichlorfon or O,O-dimethyl-(2,2,2-trichloro-1-hydroxyethyl) phosphonate is an organophosphorus insecticide with cholinesterase inhibitor activity that has been widely used in protection of field and fruit crops. Trichlorfon rearranges to other more toxic organophosphate insecticides (such as dichlorvos at pH 6–8) in aqueous media. Trichlorfon is a thermally labile compound that cannot be easily determined by gas chromatography coupled with mass spectrometry (GC-MS) and has no functional group for sensitive detection by high performance liquid chromatography (HPLC). In this study, 31P dynamic nuclear magnetic resonance is used to elucidate the stability of trichlorfon and derivatives. These spectrums are compared with the theoretical studies with the Gaussian software to determine the stability and identify the structure. Two derivatives are identified by this method.  相似文献   

4.
Szłyk E  Hrynczyszyn P 《Talanta》2011,84(1):199-203
New 31P NMR internal reference standard - hexamethylphosphoroamide (HMPA) was applied for determination of added polyphosphates and their ionic forms in raw pork meat and meat products. Phosphate species were determined after extraction with a boric acid buffer (pH = 9) and EDTA solution, using internal standard (HMPA) procedure. Hexamethylphosophoroamide was also used as the NMR reference standard. Linear correlations between phosphates and polyphosphate concentrations and 31P NMR signal areas were found in the range 81-5236 mg P/dm3, presenting 95-99% recovery and variation coefficient (CV) ≤ 5%. Studied HMPA procedure revealed shorter analysis time and the same recovery (>95%) and precision (CV = 1.3-2.7%) in comparison to MDPA method. Results of phosphate determination by both 31P NMR methods were tested against the molybdenumvanadate yellow spectrophotometric method (standard PN-ISO 13730, 1999) using standard reference material (certified phosphate solution).  相似文献   

5.
This work reports a new sensitive multi-residue liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for detection, confirmation and quantification of forty-six pesticides and transformation products belonging to different chemical classes in wines. The proposed method makes use of a solid-phase extraction (SPE) procedure with Oasis HLB cartridges that combines isolation of the pesticides and sample clean-up in a single step. Analysis is performed by liquid chromatography-electrospray ionisation-tandem mass spectrometry (LC-MS/MS) operated in the selected reaction monitoring (SRM) mode, acquiring two specific precursor-product ion transitions per target compound. An investigation of matrix effects has been performed during method validation showing medium to low effects for the majority of the compounds. Limits of detection (LODs) were in the range 0.0003–0.003 mg L−1 and limits of quantification (LOQs) were in the range 0.001–0.01 mg L−1. The average recoveries, measured at two concentration levels (0.010 and 0.050 mg L−1), were in the range 70–110% for most of the compounds tested with % relative standard deviations below 20%, while a value of 0.010 mg L−1 has been established as the method limit of quantification (MLOQ) for all target species. Expanded uncertainty values were in the range 10–40% while the Horrat ratios were below 1. The method has been successfully applied to the analysis of 60 wine samples in the course of an annual monitoring study with carbendazim-benomyl, thiophanate-methyl and carbaryl being the most frequently determined pesticides.  相似文献   

6.
A new procedure for determination of biogenic amines (BA): histamine, phenethylamine, tyramine and tryptamine, based on the derivatization reaction with 2-chloro-1,3-dinitro-5-(trifluoromethyl)-benzene (CNBF), is proposed. The amines derivatives with CNBF were isolated and characterized by X-ray crystallography and 1H, 13C, 19F NMR spectroscopy in solution. The novelty of the procedure is based on the pure and well-characterized products of the amines derivatization reaction. The method was applied for the simultaneous analysis of the above mentioned biogenic amines in wine samples by the reversed phase-high performance liquid chromatography. The procedure revealed correlation coefficients (R2) between 0.9997 and 0.9999, and linear range: 0.10–9.00 mg L−1 (histamine); 0.10–9.36 mg L-1 (tyramine); 0.09–8.64 mg L−1 (tryptamine) and 0.10–8.64 mg L−1 (phenethylamine), whereas accuracy was 97%–102% (recovery test). Detection limit of biogenic amines in wine samples was 0.02–0.03 mg L−1, whereas quantification limit ranged 0.05–0.10 mg L−1. The variation coefficients for the analyzed amines ranged between 0.49% and 3.92%. Obtained BA derivatives enhanced separation the analytes on chromatograms due to the inhibition of hydrolysis reaction and the reduction of by-products formation.  相似文献   

7.
Mycophenolic acid (MPA) is an immunosuppressant drug which powerfully inhibits lymphocyte proliferation. Since the early 1990s it has been used to prevent rejection in organ transplantation. The requirement of therapeutic drug monitoring shown in previous studies raises the necessity of acquiring accurate and sensitive methods to measure MPA and its major metabolite mycophenolic acid glucuronide (MPAG).The authors developed a sample cleanup-free, rapid, and highly specific method for simultaneous measurement of MPA and MPAG in human plasma and serum using the novel technology of ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry. MPA- and MPAG-determinations were performed during a 2.0-min run time. Multiple calibration curves for the analysis of MPA and MPAG exhibited consistent linearity and reproducibility in the range of 0.05-100 (r > 0.999) mg L−1 and 4-4000 mg L−1 (r > 0.999), respectively. Limits of Detection were 0.014 mg L−1 for MPA and 1.85 mg L−1 for MPAG. Lower Limits of Quantification were 0.05 mg L−1 for MPA and 2.30 mg L−1 for MPAG. Interassay imprecision was <10% for both substances. Mean recovery was 103.6% (range 78.1-129.7%) for MPA and 111.1% (range 73.0-139.6%) for MPAG. Agreement was good for MPA and MPAG between the presented method and a validated HPLC-MS/MS method. The Passing-Bablok regression line for MPA and MPAG was HPLC-MS/MS = 1.14 UPLC-MS/MS—0.14 [mg L−1], r = 0.96, and HPLC-MS/MS = 0.77 UPLC-MS/MS + 0.50 [mg L−1], r = 0.97, respectively. This sample cleanup-free and robust LC-MS/MS assay facilitates the rapid, accurate and simultaneous determination of MPA and MPAG in human body fluids.  相似文献   

8.
An imidazole derivative, 2-(2′-pyridyl)imidazole (PIMH), was developed as a colorimetric probe for the qualitative analysis of Fe2+ in aqueous solution. PIMH was then used to post-functionalize poly(vinylbenzyl chloride) (PVBC) nanofibers after electrospinning so as to afford a solid state colorimetric probe. Upon treatment with Fe2+ the probe displayed a distinctive color change both in liquid and solid platforms. The linear dynamic range for the colorimetric determination of Fe2+ was 0.0988–3.5 μg mL−1. The ligand showed a high chromogenic selectivity for Fe2+ over other cations with a detection limit of 0.102 μg mL−1 in solution (lower than the WHO drinking water guideline limit of 2 mg L−1), and 2 μg mL−1 in the solid state. The concentration of Fe2+ in a certified reference material (Iron, Ferrous, 1072) was found to be 2.39 ± 0.01 mg L−1, which was comparable with the certified value of 2.44 ± 0.12 mg L−1. Application of the probe to real samples spiked with Fe2+ achieved recoveries of over 97% confirming accuracy of the method and its potential for on-site monitoring.  相似文献   

9.
Microscopic information on the complexation of Be2+ with cyclo-tri-μ-imidotriphosphate anions in aqueous solution has been gained by both 9Be and 31P NMR techniques at −2.3 °C. Separate NMR signals corresponding to free and complexed species have been observed in both spectra. Based on an empirical additivity rule, i.e., proportionality observed between the 9Be NMR chemical shift values and the number of coordinating atoms of ligand molecules, the 9Be NMR spectra have been deconvoluted. By precise equilibrium analyses, the formation of [BeX(H2O)3]+ and [BeX2(H2O)2]0 (X = non-bridging oxygen donor as a coordination atom in the phosphate groups) has been verified, and the formation of complexes coordinating with the nitrogen atoms of the cyclic framework in the ligand molecule has been excluded. Instead, the formation of one-to-one (ML) complexes, one-to-two (ML2), together with two-to-one (M2L) complexes (L = cP3O6(NH)3) has been disclosed, the stability constants of which have been evaluated as log KML = 3.87 ± 0.03 (mol dm−3)−1, log KML2 = 2.43 ± 0.03 (mol dm−3)−2 and log KM2L = 1.30 ± 0.02 (mol dm−3)−2, respectively. 31P NMR spectra measured concurrently have verified the formation of the complexes estimated by the 9Be NMR measurement. Intrinsic 31P NMR chemical shift values of the phosphorus atoms belonging to ligand molecules complexed with Be2+, together with the 31P-31P spin-spin coupling constants have been determined.  相似文献   

10.
Kritsunankul O  Jakmunee J 《Talanta》2011,84(5):1342-1349
Flow injection on-line dialysis was developed for sample pretreatment prior to the simultaneous determination of some food additives by high performance liquid chromatography (FID-HPLC). A liquid sample or mixed standard solution (900 μL) was injected into a donor stream (5%, w/v, sucrose) of FID system and was pushed further through a dialysis cell, while an acceptor solution (0.025 mol L−1 phosphate buffer, pH 3.75) was held in the opposite side of the dialysis membrane. The dialysate was then flowed to an injection loop of the HPLC valve, where it was further injected into the HPLC system and analyzed under isocratic reverse-phase HPLC conditions and UV detection (230 nm). The order of elution of five food additives was acesulfame-K, saccharin, caffeine, benzoic acid and sorbic acid, respectively, with the analysis time of 14 min. On-line dialysis and HPLC analysis could be performed in parallel, providing sample throughput of 4.3 h−1. Dialysis efficiencies of five food additives were in ranges of 5-11%. Linear calibration graphs were in ranges of 10-100 mg L−1 for acesulfame-K and saccharin, 10-250 mg L−1 for benzoic acid and 10-500 mg L−1 for caffeine and sorbic acid. Good precisions (RSD < 5%) for all the additives were obtained. The proposed system was applied to soft drink and other liquid food samples. Acceptable percentage recoveries could be obtained by appropriate dilution of the sample before injecting into the system. The developed system has advantages of high degrees of automation for sample pretreatment, i.e., on-line sample separation and dilution and low consumption of chemicals and materials.  相似文献   

11.
This text presents a novel method for the separation and detection of phosphorothioate oligonucleotides with the use of ion pair ultra high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry The research showed that hexafluoroisopropanol/triethylamine based mobile phases may be successfully used when liquid chromatography is coupled with such elemental detection. However, the concentration of both HFIP and TEA influences the final result. The lower concentration of HFIP, the lower the background in ICP-MS and the greater the sensitivity. The method applied for the analysis of serum samples was based on high resolution inductively coupled plasma mass spectrometry. Utilization of this method allows determination of fifty times lower quantity of phosphorothioate oligonucleotides than in the case of quadrupole mass analyzer. Monitoring of 31P may be used to quantify these compounds at the level of 80 μg L−1, while simultaneous determination of sulfur is very useful for qualitative analysis. Moreover, the results presented in this paper demonstrate the practical applicability of coupling LC with ICP-MS in determining phosphorothioate oligonucleotides and their metabolites in serum within 7 min with a very good sensitivity. The method was linear in the concentration range between 0.2 and 3 mg L−1. The limit of detection was in the range of 0.07 and 0.13 mg L−1. Accuracy varied with concentration, but was in the range of 3%.  相似文献   

12.
Biogenic amines in wine usually are analyzed by high-performance liquid chromatography after direct derivatization. A method of isolation based on solid-phase extraction (SPE) with mixed-mode resins (Oasis MCX, reverse-phase and ion exchange) was developed. The different stages of the isolation process (loading, elution and washing) were optimized to obtain a simple procedure that yields a clean chromatogram. The relative standard deviation (%RSD) of the retention times and relative areas was less than 0.3% and 6%, respectively. Limits of quantification were lower than 0.16 mg L−1 for all the amines and the linear range of concentration was 0.16–8 mg L−1 for putrescine, cadaverine and tyramine, and up to 10 mg L−1 for histamine.  相似文献   

13.
A novel one-step sample preparation technique called ultrasound-assisted matrix solid-phase dispersive liquid extraction was developed. After sample matrices being dispersed, target analytes were extracted into acid solutions and fat and lipin were dissolved in n-hexane while the interfering components were retained by dispersing sorbent. The extraction process could be rapidly accomplished within 9 min with high sample throughput under the synergistic effects of vibration, ultrasound action and heating. The extraction efficiency of approach was demonstrated for the determination of intermediates in commercial hair dyes with ion chromatography. Linearity ranges of 0.2–100 mg L−1 and detection limits varying from 0.019 to 0.048 mg L−1 were achieved. The recoveries ranged from 85.7 to 107.0% with the relative standard deviations (RSDs) of 0.31–3.7%. These results showed that the method was simple, time-saving, reliable and suitable for the routine analysis of intermediates in large numbers of hair dyes.  相似文献   

14.
A rapid method for the identification and quantification of l-ascorbic acid in wines by direct injection liquid chromatography equipped with a UV detection was developed. The levels of ascorbic acid were determined using a polymeric PLRP-S 100 A (5 μm) column (150 mm × 4.6 mm) with a mobile water/trifluoroacetic acid (99/1, v/v) phase. The method is rapid (less than 5 min) and sensitive (LOQ of 5 mg L−1). The calibration curve of ascorbic acid was linear (r = 0.999) over a concentration range between 1 and 200 mg L−1. Repeatability was less than 2.5% and the recovery over 95%.  相似文献   

15.
The determination of oxytetracycline in milk samples using a polymer inclusion membrane concept with high performance liquid chromatography (HPLC) was studied. The membranes developed are composed by cellulose acetate as polymer base, Cyanex 923 as carrier and o-nitrophenyl octyl ether as plasticizer. In the optimal conditions, the method exhibits good linearity in the range 0.03–0.20 mg L−1 with a limit of detection and quantification of 8.2 and 27.3 μg L−1 respectively. The method was successfully applied to the analysis of milk samples with high selectivity.  相似文献   

16.
A sequential injection analysis (SIA) using lab-on-valve with air segmentation and spectrophotometric detection was designed for copper(II) determination. It is based on the reaction of copper(II) and 2-carboxy-2′-hydroxy-5′-sulfoformazyl benzene (Zincon) in a weak alkaline solution between the air zones. Beer's Law was obeyed over the range of 0.1-2.0 mg L−1 copper(II) with a correlation coefficient 0.9985 and a slope of 0.2893 absorbance unit/mg L−1. The relative standard deviation was 2.0% for a series of 10 measurements of 0.5 mg L−1 copper(II) solution. The detection limit (3 S/N) and the limit of quantification (LOQ) were 0.05 and 0.17 mg L−1 respectively. This method has been successfully applied to determination of copper(II) in wastewater with a sample throughput of 120 h−1. The method is superior to the batchwise method in that it provides fully automation, rapidity, less reagents and sample consumption with little waste generation.  相似文献   

17.
The paper presents a new method for a simultaneous determination of inorganic nitrogen species in the oxidized (NO2, NO3) and reduced (NH4+) form in rain water samples. The method is based on a system of nitrogen species separation employing ion exchange and diode-array detection. The ions are separated in a strong ion-exchanger, nitrites and nitrates are determined directly at 208 and 205 nm, respectively, while the ammonium ions are determined in the column hold-up time after a post-column derivatization by the Nessler reagent, at 425 nm. The use of a diode-array detector permits a simultaneous identification of the inorganic nitrogen species in 8 min. The detection limits obtained are: NO2, 0.1 mg L−1; NO3, 0.05 mg L−1; NH4+, 1 mg L−1. The method proposed has been successfully used for speciation analysis of inorganic nitrogen in precipitation.  相似文献   

18.
CE methods have been developed for the analysis of organic and peroxide-based explosives. These methods have been developed for deployment on portable, in-field instrumentation for rapid screening. Both classes of compounds are neutral and were separated using micellar electrokinetic chromatography (MEKC). The effects of sample composition, separation temperature, and background electrolyte composition were investigated. The optimised separation conditions (25 mM sodium tetraborate, 75 mM sodium dodecyl sulfate at 25 °C, detection at 200 nm) were applied to the separation of 25 organic explosives in 17 min, with very high efficiency (typically greater than 300,000 plates m−1) and high sensitivity (LOD typically less than 0.5 mg L−1; around 1–1.5 μM). A MEKC method was also developed for peroxide-based explosives (10 mM sodium tetraborate, 100 mM sodium dodecyl sulfate at 25 °C, detection at 200 nm). UV detection provided LODs between 5.5 and 45.0 mg L−1 (or 31.2–304 μM), which is comparable to results achieved using liquid chromatography. Importantly, no sample pre-treatment or post-column reaction was necessary and the peroxide-based explosives were not decomposed to hydrogen peroxide. Both MEKC methods have been applied to pre-blast analysis and for the detection of post-blast residues recovered from controlled, small scale detonations of organic and peroxide-based explosive devices.  相似文献   

19.
A fast method using high-performance liquid chromatography based on two monolithic columns has been developed for the simultaneous determination of isoflavones extracted from soybeans and derived foods. The 12 main isoflavones were resolved in 10 min in two coupled monolithic columns working at 35 °C using a elution gradient of acidified water (0.1% acetic acid) and methanol (0.1% acetic acid) at a flow rate of 5 mL min−1. Retention time and relative area standard deviations were below 1% for all isoflavones. The method developed was successfully applied to several soy food samples and spiked samples. Total isoflavone concentration in sampled soy foods ranged from 34.28 mg L−1 to 4.29 mg g−1.  相似文献   

20.
A novel simple, fast and efficient ultra-high performance supercritical fluid chromatography (UHPSFC) method was developed and validated for the separation and quantitative determination of eleven illegal dyes in chili-containing spices. The method involved a simple ultrasound-assisted liquid extraction of illegal compounds with tetrahydrofuran. The separation was performed using a supercritical fluid chromatography system and CSH Fluoro-Phenyl stationary phase at 70 °C. The mobile phase was carbon dioxide and the mixture of methanol:acetonitrile (1:1, v/v) with 2.5% formic acid as an additive at the flow rate 2.0 mL min−1. The UV–vis detection was accomplished at 500 nm for seven compounds and at 420 nm for Sudan Orange G, Butter Yellow, Fast Garnet GBC and Methyl Red due to their maximum of absorbance. All eleven compounds were separated in less than 5 min. The method was successfully validated and applied using three commercial samples of chili-containing spices – Chili sauce (Indonesia), Feferony sauce (Slovakia) and Mojo sauce (Spain). The linearity range of proposed method was 0.50–9.09 mg kg−1 (r ≥ 0.995). The detection limits were determined as signal to noise ratio of 3 and were ranged from 0.15 mg kg−1 to 0.60 mg kg−1 (1.80 mg kg−1 for Fast Garnet) for standard solution and from 0.25 mg kg−1 to 1.00 mg kg−1 (2.50 mg kg−1 for Fast Garnet, 1.50 mg kg−1 for Sudan Red 7B) for chili-containing samples. The recovery values were in the range of 73.5–107.2% and relative standard deviation ranging from 0.1% to 8.2% for within-day precision and from 0.5% to 8.8% for between-day precision. The method showed potential for being used to monitor forbidden dyes in food constituents. The developed UHPSFC method was compared to the UHPLC-UV method. The orthogonality of Sudan dyes separation by these two methods was demonstrated. Benefits and drawbacks were discussed showing the reliability of both methods for monitoring of studied illegal dyes in real food constituents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号