首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 848 毫秒
1.
In this work, a simple enzyme-free flow cytometric assay (termed as TSDR-based flow cytometric assay) has been developed for the detection of papillary thyroid carcinoma (PTC)-related microRNA (miRNA), hsa-miR-146b-5p with high performance through the toehold-mediated strand displacement reaction (TSDR) on magnetic beads (MBs). The complementary single-stranded DNA (ssDNA) probe of hsa-miR-146b-5p was first immobilized on the surface of MB, which can partly hybridize with the carboxy-fluorescein (FAM)-modified ssDNA, resulting in strong fluorescence emission. In the presence of hsa-miR-146b-5p, the TSDR is trigged, and the FAM-modified ssDNA is released form the MB surface due to the formation of DNA/RNA heteroduplexes on the MB surface. The fluorescence emission change of MBs can be easily read by flow cytometry and is strongly dependent on the concentration of hsa-miR-146b-5p. Under optimal conditions, the TSDR-based flow cytometric assay exhibits good specificity, a wide linear range from 5 to 5000 pM and a relatively low detection limit (LOD, 3σ) of 4.21 pM. Moreover, the practicability of the assay was demonstrated by the analysis of hsa-miR-146b-5p amounts in different PTC cells and clinical PTC tissues.  相似文献   

2.
Gao F  Cui P  Chen X  Ye Q  Li M  Wang L 《The Analyst》2011,136(19):3973-3980
A novel and efficient method to evaluate the DNA hybridization based on a fluorescence resonance energy transfer (FRET) system, with fluorescein isothiocyanate (FITC)-doped fluorescent silica nanoparticles (SiNPs) as donor and gold nanoparticles (AuNPs) as acceptor, has been reported. The strategy for specific DNA sequence detecting is based on DNA hybridization event, which is detected via excitation of SiNPs-oligonucleotide conjugates and energy transfer to AuNPs-oligonucleotide conjugates. The proximity required for FRET arises when the SiNPs-oligonucleotide conjugates hybridize with partly complementary AuNPs-oligonucleotide conjugates, resulting in the fluorescence quenching of donors, SiNPs-oligonucleotide conjugates, and the formation of a weakly fluorescent complex, SiNPs-dsDNA-AuNPs. Upon the addition of the target DNA sequence to SiNPs-dsDNA-AuNPs complex, the fluorescence restores (turn-on). Based on the restored fluorescence, a homogeneous assay for the target DNA is proposed. Our results have shown that the linear range for target DNA detection is 0-35.0 nM with a detection limit (3σ) of 3.0 picomole. Compared with FITC-dsDNA-AuNPs probe system, the sensitivity of the proposed probe system for target DNA detection is increased by a factor of 3.4-fold.  相似文献   

3.
Niu S  Li Q  Qu L  Wang W 《Analytica chimica acta》2010,680(1-2):54-58
An ultrasensitive fluorescence detection method for DNA based on nicking endonuclease (NEase) and target recycles assisted with CdTe quantum dots (QDs) is reported. In the detection system, when the target DNA is present, it hybridizes with a linker strand to from a duplex, in which the NEase recognizes specific nucleotide sequences and cleaves the linker strand. After nicking, the fragments of the linker strand spontaneously dissociate from the target DNA and another linker strand hybridizes to the target to trigger another strand-scission cycle. On the other hand, when the target was absent, no duplex is formed and no fragment of linker strand is produced. Then CdTe QDs and magnetic beads (MBs), which were all modified with DNA sequences complementary to that of the linker strands are added to the solution to detect the presence of a target DNA. The signal was generated through the difference in F?rster resonance energy transfer (FRET) between the MB and CdTe QDs. This method indicates that one target DNA leads to cleavage of hundreds of linker DNA, increasing detection sensitivity by nearly three orders of magnitude. This method should be applicable whenever there is a requirement to detect a specific DNA sequence and can also be used for multicomponent detection.  相似文献   

4.
A microfluidic biosensor with electrochemical detection for the quantification of nucleic acid sequences was developed. In contrast to most microbiosensors that are based on fluorescence for signal generation, it takes advantage of the simplicity and high sensitivity provided by an amperometric and coulorimetric detection system. An interdigitated ultramicroelectrode array (IDUA) was fabricated in a glass chip and integrated directly with microchannels made of poly(dimethylsiloxane) (PDMS). The assembly was packaged into a Plexiglas housing providing fluid and electrical connections. IDUAs were characterized amperometrically and using cyclic voltammetry with respect to static and dynamic responses for the presence of a reversible redox couple-potassium hexacyanoferrate (ii)/hexacyanoferrate (iii) (ferri/ferrocyanide). A combined concentration of 0.5 microM of ferro/ferricyanide was determined as lower limit of detection with a dynamic range of 5 orders of magnitude. Background signals were negligible and the IDUA responded in a highly reversible manner to the injection of various volumes and various concentrations of the electrochemical marker. For the detection of nucleic acid sequences, liposomes entrapping the electrochemical marker were tagged with a DNA probe, and superparamagnetic beads were coated with a second DNA probe. A single stranded DNA target sequence hybridized with both probes. The sandwich was captured in the microfluidic channel just upstream of the IDUA via a magnet located in the outside housing. Liposomes were lysed using a detergent and the amount of released ferro/ferricyanide was quantified while passing by the IDUA. Optimal location of the magnet with respect to the IDUA was investigated, the effect of dextran sulfate on the hybridization reaction was studied and the amount of magnetic beads used in the assay was optimized. A dose response curve using varying concentrations of target DNA molecules was carried out demonstrating a limit of detection at 1 fmol assay(-1) and a dynamic range between 1 and 50 fmol. The overall assay took 6 min to complete, plus 15-20 min of pre-incubation and required only a simple potentiostat for signal recording and interpretation.  相似文献   

5.
Zhang CY  Johnson LW 《The Analyst》2006,131(4):484-488
We report a homogenous method for rapid and sensitive detection of nucleic acids using two-color quantum dots (QDs) based on single-molecule coincidence detection. The streptavidin-coated quantum dots functioned as both a nano-scaffold and as a fluorescence pair for coincidence detection. Two biotinylated oligonucleotide probes were used to recognize and detect specific complementary target DNA through a sandwich hybridization reaction. The DNA hybrids were first caught and assembled on the surface of 605 nm-emitting QDs (605QDs) through specific streptavidin-biotin binding. The 525 nm-emitting QDs (525QDs) were then added to bind the other end of DNA hybrids. The coincidence signals were observed only when the presence of target DNA led to the formation of 605QD/DNA hybrid/525QD complexes. In comparison with a conventional QD-based assay, this assay provided high detection efficiency and short analysis time due to its high hybridization efficiency resulting from the high diffusion coefficient and no limitation of temperature treatment. This QD-based single-molecule coincidence detection offers a simple, rapid and ultra sensitive method for genomic DNA analysis in a homogenous format.  相似文献   

6.
A multiplexed assay strategy was developed for the detection of nucleic acid hybridization. It is based on fluorescence resonance energy transfer (FRET) between gold nanoparticles (AuNPs) and multi-sized quantum dots (QDs) deposited on the surface of silica photonic crystal beads (SPCBs). The SPCBs were first coated with a three-layer primer film formed by the alternating adsorption of poly(allylamine hydrochloride) and poly(sodium 4-styrensulfonate). Probe DNA sequences were then covalently attached to the carboxy groups at the surface of the QD-coated SPCBs. On addition of DNA-AuNPs and hybridization, the fluorescence of the donor QDs is quenched because of the close proximity of the AuNPs. However, the addition of target DNA causes a recovery of the fluorescence of the QD-coated SPCBs, thus enabling the quantitative assay of hybridized DNA. Compared to fluorescent dyes acting as acceptors, the use of AuNPs results in much higher quenching efficiency. The multiplexed assay displays a wide linear range, high sensitivity, and very little cross-reactivity. This work, where such SPCBs are used for the first time in a FRET assay, is deemed to present a new and viable approach towards high-throughput multiplexed gene assays.
Figure
A novel fluorescence energy transfer system was constructed for the multiplexed hybridization assay using gold nanoparticles and quantum dot conjugates on silica photonic crystal beads  相似文献   

7.
The development of an electrochemical genosensor involving DNA biotinylated capture probe immobilized on streptavidin coated paramagnetic beads and microfluidic based platform for the detection of P53 gene PCR product is reported. The novelty of this work is the combination of a sensitive electrochemical platform and a proper microfluidic system with a simple and effective enzyme signal amplification technology, ELISA, for detection of target DNA sequence and single nucleotide mutation in p53 tumor suppressor gene sequence. The biosensor has been applied to detect the PCR amplified samples and the results shows that it can discriminate successfully perfect matched DNA from mutant form.  相似文献   

8.
Chung WJ  Kim MS  Cho S  Park SS  Kim JH  Kim YK  Kim BG  Lee YS 《Electrophoresis》2005,26(3):694-702
A bead affinity chromatography system, which was based on the photolytic elution method, was integrated into a glass-silicon microchip to purify specific target proteins. CutiCore beads, which were coupled with a photo-cleavable ligand, such as biotin and an RNA aptamer, were introduced into a filter chamber in the microchip. The protein mixture containing target protein labeled with fluorescein isothiocyanate (FITC) was then passed through the packed affinity beads in the microchamber by pressure-driven flow. During the process, the adsorbed protein on the bead was monitored by fluorescence. The concentrated target protein on the affinity bead was released by simple irradiation with UV light at a wavelength of 360 nm, and subsequently eluted with the phosphate buffer flow. The eluted target protein was quantitatively detected via the fluorescence intensity measurements at the downstream of the capillary connected to the outlet of the microchip. The microaffinity purification allowed for a successful method for the identification of specific target proteins from a protein mixture. In addition, the feasibility of this system for use as a diagnosis chip was demonstrated.  相似文献   

9.
The unique optoelectronic properties of semiconductor quantum dots (QDs) make them well-suited as fluorescent bioprobes for use in various biological applications. Modification of CdSe/ZnS QDs with biologically relevant molecules provides for multipotent probes that can be used for cellular labeling, bioassays, and localized optical interrogation by means of fluorescence resonance energy transfer (FRET). Herein, we demonstrate the use of red-emitting streptavidin-coated QDs (QD605) as donors in FRET to introduce a competitive displacement-based assay for the detection of oligonucleotides. Various QD–DNA bioconjugates featuring 25-mer probe sequences diagnostic of Hsp23 were prepared. The single-stranded oligonucleotide probes were hybridized to dye-labeled (Alexa Fluor 647) reporter sequences, which were provided for a FRET-sensitized emission signal due to proximity of the QD and dye. The dye-labeled sequence was designed to be partially complementary and include base-pair mismatches to facilitate displacement by a more energetically favorable, fully complementary recognition motif embedded within a 98-mer displacer sequence. Overall, this study demonstrates proof-of-concept at the nM level for competitive displacement hybridization assays in vitro by reduction of fluorescence intensity that directly correlates to the presence of oligonucleotides of interest. This work demonstrates an analytical method that could potentially be implemented for monitoring of intracellular gene expression in the future.  相似文献   

10.
The cytotoxicity and DNA damage caused by thioglycolic acid(TGA)-capped cadmium telluride(CdTe)quantum dots(QDs)to hepatocyte line HL-7702 were investigated.Cell viability was measured by 3-(4,5-dimeth...  相似文献   

11.
We describe a rapid, quantitative, multiplex, self-labelled, and real-time DNA biosensor employing Ag nanoparticle-bound DNA hairpin probes immobilized in a microfluidic channel. Capture of complementary target DNAs by the microarrayed DNA hairpin probes results in a positive fluorescence signal via a conformational change of the probe molecules, signalling the presence of target DNAs. The device's capability for quantitative analyses was evaluated and a detection time as low as 6 min (with a target flow rate of 0.5 μl min(-1)) was sufficient to generate significant detection signals. This detection time translates to merely 3 μl of target solution consumption. An unoptimized sensitivity of 500 pM was demonstrated for this device.  相似文献   

12.
We demonstrate that CdS quantum dots (QDs) can be applied to fluorescence-enhanced detection of nucleic acids in a two-step protocol. In step one, a fluorescently labeled single-stranded DNA probe is adsorbed on the QDs to quench its luminescence. In step two, the hybridization of the probe with its target ssDNA produces a double-stranded DNA which detaches from the QD. This, in turn, leads to the recovery of the fluorescence of the label. The lower detection limit of the assay is as low as 1?nM. The scheme (that was applied to detect a target DNA related to the HIV) is simple and can differentiate between perfectly complementary targets and mismatches.
Figure
CdS quantum dots (CdSQDs) can serve as an effective sensing platform for fluorescence-enhanced DNA detection. This sensing system has a detection limit of 1?nM and is capable of differentiating between complementary and mismatched sequences.  相似文献   

13.
Monodispersed quantum dots (QDs)-encoded polymer microbeads were generated using a simple capillary fluidic device (CFD). The polymer and QDs solution was emulsified into monodispersed microdroplets by the CFD and obtained droplets were solidified via solvent evaporation. Polymer microbeads can be fabricated in a range of different sizes through changing the flow rates of the two immiscible phases, and have a highly narrow size distribution and uniform shape. QDs-encoding capacity of the microbeads was investigated through adjusting the concentrations and ratios of QDs in the polymer solution. Mono-color encoded microbeads with five intensities and a dual-color QDs-encoded 5×5 microbeads array were obtained, and the spectral profiles of the microbeads were examined by a fluorescent microscope coupled with a spectral imaging system. QDs-tagged microbeads prepared with this method were more stable than the porous beads swollen with QDs in the buffer with various pH and crosslinking chemicals. Finally, the application of such microbeads for biomolecule detection was demonstrated by conjugation of rabbit IgG molecules on the surface of the microbeads via carboxyl groups, which were then detected by fluorophores-labeled goat-anti-rabbit IgG antibodies.  相似文献   

14.
Kim YS  Jurng J 《The Analyst》2011,136(18):3720-3724
We developed a homogeneous fluorescence assay for multiplex detection based on the target induced conformational change of DNA aptamers. DNA aptamers were immobilized on quantum dots (QDs), and QDs conjugated ssDNA was adsorbed on the surface of gold nanoparticles (AuNPs) by electrostatic interaction between uncoiled ssDNA and the AuNPs. Subsequently the fluorescence of QDs was effectively quenched by the AuNPs due to fluorescence resonance energy transfer (FRET) of QDs to AuNPs. In the presence of targets, the QDs conjugated aptamers were detached from AuNPs by target induced conformational change of aptamers, consequently the fluorescence of the QDs was recovered proportional to the target concentration. In this study, three different QD/aptamer conjugates were used for multiplex detection of mercury ions, adenosine and potassium ions. In a control experiment, all of the three targets were simultaneously detected with high selectivity.  相似文献   

15.
The optical properties and surface area of quantum dots (QDs) have made them an attractive platform for the development of nucleic acid biosensors based on fluorescence resonance energy transfer (FRET). Solid-phase assays based on FRET using mixtures of immobilized QD–oligonucleotide conjugates (QD biosensors) have been developed. The typical challenges associated with solid-phase detection strategies include non-specific adsorption, slow kinetics of hybridization, and sample manipulation. The new work herein has considered the immobilization of QD biosensors onto the surfaces of microfluidic channels in order to address these challenges. Microfluidic flow can be used to dynamically control stringency by adjustment of the potential in an electrokinetic-based microfluidics environment. The shearing force, Joule heating, and the competition between electroosmotic and electrophoretic mobilities allow the optimization of hybridization conditions, convective delivery of target to the channel surface to speed hybridization, amelioration of adsorption, and regeneration of the sensing surface. Microfluidic flow can also be used to deliver (for immobilization) and remove QD biosensors. QDs that were conjugated with two different oligonucleotide sequences were used to demonstrate feasibility. One oligonucleotide sequence on the QD was available as a linker for immobilization via hybridization with complementary oligonucleotides located on a glass surface within a microfluidic channel. A second oligonucleotide sequence on the QD served as a probe to transduce hybridization with target nucleic acid in a sample solution. A Cy3 label on the target was excited by FRET using green-emitting CdSe/ZnS QD donors and provided an analytical signal to explore this detection strategy. The immobilized QDs could be removed under denaturing conditions by disrupting the duplex that was used as the surface linker and thus allowed a new layer of QD biosensors to be re-coated within the channel for re-use of the microfluidic chip.  相似文献   

16.
Polymerase-free and label-free strategies for DNA detection have shown excellent sensitivity and specificity in various biological samples. Herein, we propose a method for single nucleotide polymorphism (SNP) detection by using self-assembled DNA concatemers. Capture probes, bound to magnetic beads, can joint mediator probes by T4 DNA ligase in the presence of target DNA that is complementary to the capture probe and mediator probe. The mediator probes trigger self-assembly of two auxiliary probes on magnetic beads to form DNA concatemers. Separated by a magnetic rack, the double-stranded concatemers on beads can recruit a great amount of SYBR Green I and eventually result in amplified fluorescent signals. In comparison with reported methods for SNP detection, the concatemer-based approach has significant advantages of low background, simplicity, and ultrasensitivity, making it as a convenient platform for clinical applications. As a proof of concept, BRAFT1799A oncogene mutation, a SNP involved in diverse human cancers, was used as a model target. The developed approach using a fluorescent intercalator can detect as low as 0.1 fM target BRAFT1799A DNA, which is better than those previously published methods for SNP detection. This method is robust and can be used directly to measure the BRAFT1799A DNA in complex human serum with excellent recovery (94–103%). It is expected that this assay principle can be directed toward other SNP genes by simply changing the mediator probe and auxiliary probes.  相似文献   

17.
18.
In this work, a novel homogeneous and signal “off–on” aptamer based fluorescence assay was successfully developed to detect chloramphenicol (CAP) residues in food based on the fluorescence resonance energy transfer (FRET). The vesicle nanotracer was prepared through labeling single stranded DNA binding protein (SSB) on limposome-CdSe/ZnS quantum dot (SSB/L-QD) complexes. It was worth mentioning that the signal tracer (SSB/L-QD) with vesicle shape, which was fabricated being encapsulated with a number of quantum dots and SSB. The nanotracer has excellent signal amplification effects. The vesicle composite probe was formed by combining aptamer labeled nano-gold (Au-Apt) and SSB/L-QD. Which based on SSB's specific affinity towards aptamer. This probe can't emit fluoresce which is in “off” state because the signal from SSB/L-QD as donor can be quenched by the Au-aptas acceptor. When CAP was added in the composite probe solution, the aptamer on the Au-Apt can be preferentially bounded with CAP then release from the composite probe, which can turn the “off” signal of SSB/L-QD tracer into “on” state. The assay indicates excellent linear response to CAP from 0.001 nM to 10 nM and detection limit down to 0.3 pM. The vesicle probes with size of 88 nm have strong signal amplification. Because a larger number of QDs can be labeled inside the double phosphorus lipid membrane. Besides, it was employed to detect CAP residues in the milk samples with results being agreed well with those from ELISA, verifying its accuracy and reliability.  相似文献   

19.
In this work, the compatibility of quantum dots (QDs) with immunobuffers was studied by investigating the fluorescence stability of QDs in immunobuffers (in this research immunobuffers were defined as buffers for immunoaffinity binding or separation). Experimentally, the fluorescence signals of QDs with different surface chemistries (amine-terminated, streptavidin-coated, or antibody-conjugated) in commonly used immunobuffers were monitored versus time. The effect of some buffer composition on the compatibility of QDs with these buffers was also explored. Based on experimental data, the QD compatibility with these buffers is summarized, and it is found that a trace amount of bovine serum albumin added to most of these buffers helps QDs to achieve compatibility with them. Moreover, with QD as fluorescence label and C-reactive protein as a model analyte, a magnetic bead-based assay was performed using compatible and incompatible QD–immunobuffer systems. It is shown that compatible QD–immunobuffer systems can be used to achieve a higher assay signal/background ratio.   相似文献   

20.
The authors describe a fluorescence based aptasensor for adenosine (AD), a conceivable biomarker for cancer. The assay is based on the immobilization of capture DNA on newly synthesized quaternary CuInZnS quantum dots (QDs) and the conjugation of probe DNA on gold nanoparticles (AuNPs). The capture DNA is an adenosine-specific aptamer that is partly complementary to the probe DNA. Once the capture aptamer hybridizes probe DNA, the fluorescence of the QDs (measured at excitation/emission wavelengths of 522/650 nm) is quenched by the AuNPs. However, when AD is added, it will bind to the aptamer and restrain the hybridization between capture DNA and probe DNA. Therefore, the fluorescence of the QDs will increase with increasing AD concentration. Under optimal conditions, fluorescence is linearly related to the AD concentration in the range from 50 to 400 μM, the detection limit being 1.1 μM. This assay is sensitive, selective, reproducible and acceptably stable. It was applied to the determination of AD in spiked human serum samples where it gave satisfactory results.
Graphical abstract Aptamer based fluorescent assay of adenosine using quaternary CuInZnS quantum dots and gold nanoparticles
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号