首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel cedar-like Au nanoparticles (AuNPs) coating was fabricated on an etched stainless steel (SS) wire by direct chemical deposition and used as an efficient and unbreakable solid phase microextraction (SPME) fiber. The etched SS wire offers a rough surface structure for subsequent growth of AuNPs in chloroauric acid solution. As a result, the uniform cedar-like AuNPs coating with larger surface area was tightly attached to the etched SS wire substrate. The AuNPs coated etched SS fiber (AuNPs/SS) was examined for SPME of ultraviolet (UV) filters, phthalate esters and aromatic hydrocarbons coupled to high-performance liquid chromatography with UV detection. The fabricated fiber exclusively exhibited excellent extraction efficiency and selectivity for some aromatic hydrocarbons. Influential parameters of extraction and desorption time, temperature, stirring rate and ionic strength were investigated and optimized. The limits of detection ranged from 0.008 μg L−1 to 0.037 μg L−1. The single fiber repeatability varied from 3.90% to 4.50% and the fiber-to-fiber reproducibility ranged from 5.15% to 6.87%. The recovery of aromatic hydrocarbons in real water samples spiked at 2.0 μg L−1 and 20 μg L−1 ranged from 94.38% to 106.2% with the relative standard deviations below 6.44%. Furthermore the growth of the cedar-like AuNPs coating can be performed in a highly reproducible manner. This fabricated fiber exhibits good stability and withstands at least 200 extraction and desorption replicates.  相似文献   

2.
A novel titania sol-gel coating, including tetrabutyl orthototitanat (TBOT) as initial alkoxide, triethanolamine (TEA) as stabilizer, nitric acid as acid catalyst, and polyethylene glycol (PEG, 6000) as binder was prepared for the first time on an anodized aluminium wire and subsequently applied to headspace solid phase microextraction (HS-SPME) of benzene, toluene, ethylbenzene and xylenes (BTEX) with gas chromatography flame ionization detection (GC-FID). The analytical characteristics of the proposed porous titania sol-gel derived TBOT/PEG/TEA (41.6:16.0:42.4) fiber were comparable with reported fibers. The extraction temperature, extraction time, effect of salt addition, desorption temperature and desorption time were optimized. Under the optimized conditions and for all BTEX components, the linearity was from 20 to 800 μg L−1, the RSD was below 8.2% and limit of detections (LODs) were between 5.4 and 14.8 μg L−1. The recovery values were from 86.7% to 94.2% in water samples. The proposed HS-SPME-GC-FID method was successfully applied for the analysis of BTEX compounds from petrochemical wastewater samples.  相似文献   

3.
Metal-organic frameworks (MOFs) have received great attention as novel sorbents due to their fascinating structures and intriguing potential applications in various fields. In this work, a MIL-101(Cr)-coated solid-phase microextraction (SPME) fiber was fabricated by a simple direct coating method and applied to the determination of volatile compounds (BTEX, benzene, toluene, ethylbenzene, m-xylene and o-xylene) and semi-volatile compounds (PAHs, polycyclic aromatic hydrocarbons) from water samples. The extraction and desorption conditions of headspace SPME (HS-SPME) were optimized. Under the optimized conditions, the established methods exhibited excellent extraction performance. Good precision (<7.7%) and low detection limits (0.32–1.7 ng L−1 and 0.12–2.1 ng L−1 for BTEX and PAHs, respectively) were achieved. In addition, the MIL-101(Cr)-coated fiber possessed good thermal stability, and the fiber can be reused over 150 times. The fiber was successfully applied to the analysis of BTEX and PAHs in river water by coupling with gas chromatography–mass spectrometry (GC–MS). The analytes at low concentrations (1.7 and 10 ng L−1) were detected, and the recoveries obtained with the spiked river water samples were in the range of 80.0–113% and 84.8–106% for BTEX and PAHs, respectively, which demonstrated the applicability of the self-made fiber.  相似文献   

4.
Novel solid-phase microextraction fibers were prepared based on sol–gel technique. Commonly used fused silica substrate was replaced by titanium wire which provided high strength and longer fiber life cycle. Titanium isopropoxide was employed as the precursor which provides a sol solution containing Ti–OH groups and shows more tendencies to the molecularly similar group on the substrate. Three different polymers, poly (dimethylsiloxane) (PDMS), poly(ethylenepropyleneglycol)-monobutyl ether (Ucon) and polyethylene glycol (PEG) were employed as coating polymer in preparing three different fibers. The applicability of these fibers was assessed for the headspace SPME (HS-SPME) of benzene, toluene, ethylbenzene and xylenes (BTEX) from water sample followed by gas chromatography–mass spectrometry (GC–MS). Effects of different parameters such as fiber coating type, extraction condition, desorption condition were investigated and optimized. Under the optimized conditions, LODs and LOQs of 0.75–10 μg L−1 (S/N = 3) and 1–20 μg L−1 (S/N = 10) were respectively obtained. The method showed linearity in the range of 10–25,000 μg L−1 with correlation coefficient of >0.99. The relative standard deviation was less than 8%.  相似文献   

5.
A method has been developed to determine acrylamide in aqueous matrices by using direct immersion solid-phase microextraction (SPME) coupled to gas chromatography-positive chemical ionization tandem mass spectrometry (GC-PCI-MS-MS) in the selected reaction monitoring (SRM) mode. The optimized SPME experimental procedures to extract acrylamide in water solutions were: use of a carbowax/divinylbenzene (CW/DVB)-coated fiber at pH 7, extraction time of 20 min and analyte desorption at 210 °C for 3 min. A detection limit of 0.1 μg L−1 was obtained. The linear range was 1-1000 μg L−1. The relative standard deviation was 10.64% (n = 7). The proposed analytical method was successfully used for the quantification of trace acrylamide in foodstuffs such as French fries (1.2 μg g−1) and potato crisps (2.2 μg g−1).  相似文献   

6.
A novel solid-phase microextraction (SPME) fiber coating was prepared with siloxane-modified polyurethane acrylic resin by photo-cured technology. The ratio of two monomers was investigated to obtain good microphase separation structure and better extraction performance. The self-made fiber was then applied to organophosphorus pesticides (OPPs) analysis and several factors, such as extraction/desorption time, extraction temperature, salinity, and pH, were studied. The optimized conditions were: 15 min extraction at 25 °C, 5% Na2SO4 content, pH 7.0 and 4 min desorption in GC inlet. The self-made fiber coating exhibited better extraction efficiency for OPPs, compared with three commercial fiber coatings. Under the optimized conditions, the detection limits of 11 OPPs were from 0.03 μg L−1 to 0.5 μg L−1. Good recoveries and repeatabilities were obtained when the method was used to determine OPPs in ecological textile.  相似文献   

7.
A new solid-phase microextraction (SPME) procedure using an ionic liquid (IL) has been developed. Reusable IL-based SPME fiber was prepared for the first time by fixing IL through cross-linkage of IL impregnated silicone elastomer on the surface of a fused silica fiber. 1-Ethoxyethyl-3-methylimidazloium bis(trifluoromethane) sulfonylimide ([EeMim][NTf2]) ionic liquid was employed as a demonstration and the prepared fiber was applied to the forensic headspace determination of methamphetamine (MAP) and amphetamine (AP) in human urine samples. Important extraction parameters including the concentration of salt and base in sample matrix, extraction temperature and extraction time were investigated and optimized. Combined with gas chromatography/mass spectrometry (GC/MS) working in selected ion monitoring (SIM) mode, the new method showed good linearity in the range of 20–1500 μg L−1, good repeatability (RSD < 7.5% for MAP, and <11.5% for AP, n = 6), and low detection limits (0.1 μg L−1 for MAP and 0.5 μg L−1 for AP). Feasibility of the method was evaluated by analyzing human urine samples. Although IL-based SPME is still at the beginning of its development stage, the results obtained by this work showed that it is a promising simple, fast and sensitive sample preparation method.  相似文献   

8.
A novel solid-phase microextraction (SPME) fiber coated with multiwalled carbon nanotubes (MWCNTs)/Nafion was developed and applied for the extraction of polar aromatic compounds (PACs) in natural water samples. The characteristics and the application of this fiber were investigated. Electron microscope photographs indicated that the MWCNTs/Nafion coating with average thickness of 12.5 μm was homogeneous and porous. The MWCNTs/Nafion coated fiber exhibited higher extraction efficiency towards polar aromatic compounds compared to an 85 μm commercial PA fiber. SPME experimental conditions, such as fiber coating, extraction time, stirring rate, desorption temperature and desorption time, were optimized in order to improve the extraction efficiency. The calibration curves were linear from 0.01 to 10 μg mL−1 for five PACs studied except p-nitroaniline (from 0.005 to 10 μg mL−1) and m-cresol (from 0.001 to 10 μg mL−1), and detection limits were within the range of 0.03–0.57 ng mL−1. Single fiber and fiber-to-fiber reproducibility were less than 7.5 (n = 7) and 10.0% (n = 5), respectively. The recovery of the PACs spiked in natural water samples at 1 μg mL−1 ranged from 83.3 to 106.0%.  相似文献   

9.
Yang M  Yang Y  Qu F  Lu Y  Shen G  Yu R 《Analytica chimica acta》2006,567(2):211-217
Anilinemethyltriethoxysilane (AMTEOS) was first used as precursor as well as selective stationary phase to prepare the sol-gel derived anilinemethyltriethoxysilane/polydimethylsiloxane (AMTEOS/PDMS) solid-phase microextraction (SPME) fibers. The novel SPME fiber exhibits high extraction efficiency, good thermal stability and long lifetime compared with commercial SPME coatings. In addition, the phenyl groups in the porous layer can exhibit π-π interactions with aromatic compounds, such as monocyclic aromatic hydrocarbons (MAHs) and polycyclic aromatic hydrocarbons (PAHs). Therefore, SPME using the AMTEOS/PDMS sol-gel fiber coupled with GC-FID was recommended as a sensitive and selective method towards the analysis of these compounds in environmental water samples. The optimal extraction conditions were investigated by adjusting extraction time, salt addition, extraction temperature, and desorption time. The method showed linearity between 2 and 4000 μg l−1 for MAHs and 1 and 1000 μg l−1 for PAHs. The limit of detection (LOD) was 0.6-3.8 μg l−1for MAHs and 0.2-1.5 μg l−1 for PAHs. The novel AMTEOS/PDMS fiber was applied to extract small amount of aromatic compounds in wastewater and river water respectively. The recovery of the method was acceptable for quantitative analysis.  相似文献   

10.
Two kinds of mesoporous cellular foams (MCFs), including mesoporous silica materials (MCF-1) and phenyl modified mesoporous materials (Ph-MCF-1), were synthesized and for the first time used as fiber-coating materials for solid-phase microextraction (SPME). By using stainless steel wire as the supporting core, four types of fibers were prepared by sol–gel method and immobilized by epoxy-resin method. To evaluate the performance of the home-made fibers for SPME, seven brominated flame retardants (BFRs), including tetrabromobisphenol A (TBBPA), tetrabromobisphenol S (TBBPS) and related compounds were selected as analytes. The main parameters that affect the extraction and desorption efficiencies, such as extraction temperature, extraction time, desorption time, stirring rate and ionic strength of samples were investigated and optimized. The optimized SPME coupled with high performance liquid chromatography (HPLC) was successfully applied to the determination of the seven BFRs in water samples. The linearity range was from 5.0 to 1000 μg L−1 for each compound except TBBPS (from 1.0 to 1000 μg L−1), with the correlation coefficients (r2) ranging from 0.9993 to 0.9999. The limits of detection of the method were 0.4–0.9 μg L−1. The relative standard deviations varied from 1.2 to 5.1% (n = 5). The repeatability of fiber-to-fiber and batch-to-batch was 2.5–6.5% and 3.2–6.7%. The recoveries of the BFRs from aqueous samples were in the range between 86.5 and 103.6%. Compared with three commercial fibers (100 μm PDMS, 85 μm PA and 65 μm PDMS/DVB), the MCFs-coated fiber showed about 3.5-fold higher extraction efficiency.  相似文献   

11.
A method based on solid-phase microextraction (SPME) and gas chromatography with mass spectrometry (GC/MS) for the determination of 18 organophosphorus pesticides (OPPs) in textiles is described. Commercially available SPME fibers, 100 μm PDMS and 85 μm PA, were compared and 85 μm PA exhibited better performance to the OPPs. Various parameters affecting SPME, including extraction and desorption time, extraction temperature, salinity and pH, were studied. The optimized conditions were: 35 min extraction at 25 °C, 5% NaSO4 content, pH 7.0, and 3.5 min desorption in GC injector port at 250 °C. The linear ranges of the SPME-GC/MS method were 0.1-500 μg L−1 for most of the OPPs. The limits of detection (LODs) ranged from 0.01 μg L−1 (for bromophos-ethyl) to 55 μg L−1 (for azinphos-methyl) and the RSDs were between 0.66% and 9.22%. The optimized method was then used to analyze 18 OPPs in textile sample, and the determined recoveries were ranged from 76.7% to 126.8%. Moreover, the distribution coefficients of the OPPs between 85 μm PA fiber and simulative sweat solution (Kpa/s) were determined. The determined Kpa/s of the OPPs correlated well with their octanol-water partition coefficients (r = 0.764 and 0.678) and water solubility (= −0.892 and −0.863).  相似文献   

12.
Low-temperature nonthermal plasma has been used to prepare solid-phase microextraction (SPME) fibers with high adsorbability, long-term serviceability, and high reproducibility. Graphite rods serving as fiber precursors were treated by an air plasma discharged at 15.2-15.5 kV for a duration of 8 min. Sampling results revealed that the adsorptive capacity of the homemade fiber was 2.5-34.6 times that of a polyacrylate (PA) fiber for alcohols (methanol, ethanol, isopropyl alcohol, n-butyl alcohol), and about 1.4-1.6 times and 2.5-5.1 times that of an activated carbon fiber (ACF) for alcohols and BTEX (benzene, toluene, ethylbenzene, and xylenes), respectively. It is confirmed from FTIR (Fourier transform infrared spectrophotometer) and SEM (scanning electron microscope) analyses that the improvement in the adsorptive performance attributed to increased surface energy and roughness of the graphite fiber. Using gas chromatography (GC)-flame-ionization detector (FID), the limits of detection (LODs) of the alcohols and BTEX ranged between 0.19 and 3.75 μg L−1, the linear ranges were between 0.6 and 35619 μg L−1 with good linearity (R2 = 0.9964-0.9997). It was demonstrated that nonthermal plasma offers a fast and simple method for preparing an efficient graphite SPME fiber, and that SPME using the homemade fiber represents a sensitive and selective extraction method for the analysis of a wide range of organic compounds.  相似文献   

13.
A novel solid-phase microextraction(SPME) fiber was prepared using sol–gel technology with ethoxylated nonylphenol as a fiber coating material. The fiber was employed to develop a headspace SPME–GC–MS method suitable for quantification of 13 polycyclic aromatic hydrocarbons (PAHs) in water samples. Surface characteristics of the fibers were inspected by energy dispersive X-ray (EDX) spectroscopy as well as by scanning electron microscopy (SEM). The SEM measurements showed the presence of highly porous nano-sized particles in the coating. Important parameters affecting the extraction efficiency such as extraction temperature and time, desorption conditions as well as ionic strength have been evaluated and optimized. In the next step, the validation of the new method have been performed, finding it to be specific in the trace analysis of PAHs, with the limit of detection (LOD) ranging from 0.01 to 0.5 μg L−1 and the linear range from the respective LOD to 200 μg L−1with RSD amounting to less than 8%. The thermal stability of the fibers was investigated as well and they were found to be durable at 280 °C for 345 min. Furthermore, the proposed method was successfully applied for quantification of PAHs in real water samples.  相似文献   

14.
A novel solid-phase microextraction (SPME) fiber is fabricated through the anodization of Ti wire substrates in an electrolyte containing ethylene glycol and NH4F. By a combination of field emission scanning electron microscope and X-ray photoelectron spectroscope studies, it is shown that perpendicularly orientated and well-aligned TiO2 nanotubes are grown in situ on the Ti wire substrate. The SPME fiber coupled with gas chromatograph (GC) is then used to extract polycyclic aromatic hydrocarbons (PAHs), anilines, phenols, and alkanes from standard and real water samples, and exhibits high selectivity for PAHs. After the optimization of adsorption factors (pH, ionic strength, time and temperature) and desorption factors (time and temperature) of the SPME fiber for PAHs, the limit of detection (LOD) of less than 0.1 μg L−1 is achieved, and the calibration curves are all linear (R2 ≥ 0.9898) in the range from 0.1 to 1000 μg L−1. Beyond that, the SPME fiber has high strength, large surface area, good stability at high temperature and in acid and alkali solutions, and long service life, making it have strong application potentials in the selective extraction of PAHs from complex samples at trace levels.  相似文献   

15.
A new microextraction technique based on ionic liquid solid-phase microextraction (IL-SPME) was developed for determination of trace chlorophenols (CPs) in landfill leachate. The synthesized ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([C4MIM][PF6]), was coated onto the spent fiber of SPME for extraction of trace CPs. After extraction, the absorbed analytes were desorbed and quantified using gas chromatography–mass spectrometry (GC/MS). The term of the proposed method is as ionic liquid-coated of solid-phase microextraction combined with gas chromatography–mass spectrometry (IL-SPME-GC/MS). No carryover effect was found, and every laboratory-made ionic liquids-coated-fiber could be used for extraction at least eighty times without degradation of efficiency. The chlorophenols studied were 2,4-dichlorophenol (2,4-DP), 2,4,6-trichlorophenol (2,4,6-TCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP), and pentachlorophenol (PCP). The best results of chlorophenols analysis were obtained with landfill leachate at pH 2, headspace extraction for 4 min, and thermal desorption with the gas chromatograph injector at 240 °C for 4 min. Linearity was observed from 0.1 to 1000 μg L−1 with relative standard deviations (RSD) less than 7% and recoveries were over 87%. The limit of detection (LOD) for pentachlorophenol was 0.008 μg L−1. The proposed method was tested by analyzing landfill leachate from a sewage farm. The concentrations of chlorophenols were detected to range from 1.1 to 1.4 μg L−1. The results demonstrate that the IL-SPME-GC/MS method is highly effective in analyzing trace chlorophenols in landfill leachate.  相似文献   

16.
This study examines the application of solid-phase microextraction coupled with high performance liquid chromatography combined with post-column photochemically induced fluorimetry derivatization and fluorescence detection (SPME-HPLC-PIF-FD) for the determination of four phenylurea herbicides (monolinuron, diuron, linuron and neburon) and propanil in groundwater. Direct immersion (DI) SPME was applied using a 60 μm polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber for the extraction of the pesticides from groundwater samples. An AQUASIL C18 column (150 mm × 4.6 mm i.d., 5 μm) was used for separation and determination in HPLC. The method was evaluated with respect to the limits of detection (LODs) and the limits of quantification (LOQs) according to IUPAC. The limits of detection varied between 0.019 μg L−1 and 0.034 μg L−1. Limits of quantification ranged between 0.051 μg L−1 and 0.088 μg L−1. These values meet the recommended limits for individual pesticides in groundwater (0.1 μg L−1) established by the EU. Recoveries ranged between 86% and 105% and relative standard deviation values between 2% and 8%.  相似文献   

17.
Ultrasound-assisted extraction (UAE) and direct immersion solid-phase microextraction (DI-SPME) were evaluated for the monoterpenic compounds determination in wine samples. The wine extracts obtained were analyzed by gas chromatography-mass spectrometry (GC-MS). The optimization of the variables affecting UAE and SPME methods was carried out in order to achieve the best extraction efficiency. Both UAE and SPME are quantitative (recoveries in the range 93-97% and 71.8-90.9%, respectively), precise (coefficients of variation below 5.5%), sensitive (limits of detection between 30-39 μg L−1 and 11-25 μg L−1, respectively) and linear over one order of magnitude. The application of both methods to red wine samples showed that UAE provided higher extraction of monoterpenic compounds than SPME. Although SPME remains an attractive alternative technique due to its speed, low sample volume requirements and solvent free character.  相似文献   

18.
An improved multiple co-polymerization technique was developed to prepare a novel molecularly imprinted polymer (MIP)-coated solid-phase microextraction (SPME) fiber with propranolol as template. Investigation was performed for the characteristics and application of the fibers. The MIP coating was highly crosslinked and porous with the average thickness of only 25.0 μm. Consequently, the adsorption and desorption of β-blockers within the MIP coating could be achieved quickly. The specific selectivity was discovered with the MIP-coated fibers to propranolol and its structural analogues such as atenolol, pindolol, and alprenolol. In contrast, only non-specific adsorption could be shown with the non-imprinted polymer (NIP)-coated fibers, and the extraction efficiencies of propranolol and pindolol with the MIP-coated fibers were higher markedly than that with the commercial SPME fibers. A MIP-coated SPME coupled with high-performance liquid chromatography (HPLC) method for propranolol and pindolol determination was developed under the optimized extraction conditions. Linear ranges for propranolol and pindolol were 20–1000 μg L−1 and detection limits were 3.8 and 6.9 μg L−1, respectively. Propranolol and pindolol in the spiked human urine and plasma samples, extracted with organic solvent firstly, could be simultaneous monitored with satisfactory recoveries through this method.  相似文献   

19.
A stir bar sorptive extraction with liquid desorption followed by large volume injection coupled to gas chromatography-quadrupole mass spectrometry (SBSE-LD/LVI-GC-qMS) was evaluated for the simultaneous determination of higher alcohol acetates (HAA), isoamyl esters (IsoE) and ethyl esters (EE) of fatty acids. The method performance was assessed and compared with other solventless technique, the solid-phase microextraction (SPME) in headspace mode (HS). For both techniques, influential experimental parameters were optimised to provide sensitive and robust methods. The SBSE-LD/LVI methodology was previously optimised in terms of extraction time, influence of ethanol in the matrix, liquid desorption (LD) conditions and instrumental settings. Higher extraction efficiency was obtained using 60 min of extraction time, 10% ethanol content, n-pentane as desorption solvent, 15 min for the back-extraction period, 10 mL min−1 for the solvent vent flow rate and 10 °C for the inlet temperature. For HS-SPME, the fibre coated with 50/30 μm divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) afforded highest extraction efficiency, providing the best sensitivity for the target volatiles, particularly when the samples were extracted at 25 °C for 60 min under continuous stirring in the presence of sodium chloride (10% (w/v)). Both methodologies showed good linearity over the concentration range tested, with correlation coefficients higher than 0.984 for HS-SPME and 0.982 for SBES-LD approach, for all analytes. A good reproducibility was attained and low detection limits were achieved using both SBSE-LD (0.03-28.96 μg L−1) and HS-SPME (0.02-20.29 μg L−1) methodologies. The quantification limits for SBSE-LD approach ranging from 0.11 to 96.56 μg Land from 0.06 to 67.63 μg L−1 for HS-SPME. Using the HS-SPME approach an average recovery of about 70% was obtained whilst by using SBSE-LD obtained average recovery were close to 80%. The analytical and procedural advantages and disadvantages of these two methods have been compared.Both analytical methods were used to determine the HAA, IsoE and EE fatty acids content in “Terras Madeirenses” table wines. A total of 16 esters were identified and quantified from the wine extracts by HS-SPME whereas by SBSE-LD technique were found 25 esters which include 2 higher alcohol acetates, 4 isoamyl esters and 19 ethyl esters of fatty acids. Generally SBSE-LD provided higher sensitivity with decreased analysis time.  相似文献   

20.
Hou JG  Ma Q  Du XZ  Deng HL  Gao JZ 《Talanta》2004,62(2):241-246
Mesoporous materials were employed as fast, sensitive and efficient fiber coatings of solid-phase microextraction (SPME) for the first time. Three micrometer as-synthesized C16-MCM-41 particles were immobilized onto stainless steel wire with 100 μm coating thickness. In combination with high performance liquid chromatography (HPLC), extraction efficiency and selectivity of C16-MCM-41 were investigated using aromatic hydrocarbons. Effect of extraction and desorption time, extraction temperature, stirring rate and ionic strength on extraction efficiency were examined. Aanalytical merits of SPME with C16-MCM-41 coating were evaluated. The chromatographic peak area is proportional to the concentration of anthracene in the range 0.5-150 μg l−1. The limit of detection was 0.05 μg l−1 (S/N=3) and the relative standard deviation (R.S.D.) was 0.033%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号