首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
In this work, the effects of preparation conditions used in roughening silver substrates by electrochemical triangular-wave oxidation-reduction cycles (ORC) on surface-enhanced Raman scattering (SERS) were first investigated. The optimum roughening conditions for obtaining strongest SERS of Rhodamine 6G (R6G) are as follows. Ag electrodes were cycled in deoxygenated aqueous solutions containing 0.1 M NaCl from −0.3 to +0.2 V versus Ag/AgCl at 25 mV s−1 for five scans. The SERS of R6G adsorbed on this optimum procedure-prepared roughened Ag substrate exhibits a higher intensity by one order of magnitude, as compared with that of R6G adsorbed on a normally roughened Ag substrate.  相似文献   

2.
In this work, silver nanoparticles (AgNPs) decorated magnetic microspheres (MMs) are prepared as surface-enhanced Raman scattering (SERS) substrate for the analysis of adenine in aqueous solutions. To prepare these substrates, magnetic particles were first synthesized by coprecipitation of Fe(II) and Fe(III) with ammonium hydroxide. A thin layer of cross-linked polymer was formed on these magnetic particles by polymerization through suspension of magnetic particles into a solution of divinyl benzene/methyl methacrylate. The resulted polymer protected magnetic particles are round in shape with a size of 80 μm in diameter. To form AgNPs on these MMs, photochemical reduction method was employed and the factors in photochemical reduction method were studied and optimized for the preparation of highly sensitive and stable AgNPs on MMs substrates (abbreviated as AgMMs substrates). By dispersing the AgMMs in aqueous samples, cylindrical magnet was used to attract the AgMMs for SERS detections. The observed enhancement factor of AgMMs reached 7 orders in magnitude for detection of adenine with a detection limit approaching to few hundreds of nanomolar.  相似文献   

3.
Biologically derived materials provide a rich variety of approaches toward new functional materials because of their fascinating structures and environment-friendly features, which is currently a topic of research interest. In this paper, we show that the cuttlebone-derived organic matrix (CDOM) is an excellent scaffold for the one-step synthesis and assembly of silver nanoparticles (AgNPs), which can be further used as substrate for surface-enhanced Raman scattering (SERS). Formation of AgNPs–CDOM composite was accomplished by the reaction of CDOM with AgNO3 and NH3·H2O solution at 80 °C without using any other stabilizer and reducing agents. UV–vis spectra and TEM were utilized to characterize the AgNPs and investigate their formation process. Results demonstrate that the size and distribution of AgNPs can be partly regulated by changing incubation time; the concentration of NH3·H2O is critical to the formation rate of AgNPs. As a proof of principle, we show that the AgNPs–CDOM composite can be employed in trace analysis using SERS.  相似文献   

4.
In this work, the effect of supplemental LiClO4 electrolytes in KCl solutions used in roughening silver substrates by electrochemical triangular-wave oxidation-reduction cycles (ORC) on surface-enhanced Raman scattering (SERS) was first investigated. To prepare SERS-active substrates by ORC procedures, electrolytes of KCl were generally employed. In contrast, LiClO4 ones were unsuitable for producing SERS-active substrates. Encouragingly, SERS of Rhodamine 6G (R6G) adsorbed on the roughened Ag substrate prepared in an aqueous solution containing KCl and LiClO4 electrolytes exhibits a higher intensity by one order of magnitude, as compared with that of R6G adsorbed on a roughened Ag substrate prepared in a solution only containing KCl. Further investigations indicate that the oxidation state of Cl on the roughened Ag substrate demonstrates decided effects on this improved SERS.  相似文献   

5.
For the first time, large-area surface-enhanced Raman scattering sensing active substrates using porous polymer monolithic layers have been successfully prepared. Our approach includes a simple photoinitiated polymerization process using glycidyl methacrylate and ethylene dimethacrylate in a glass mold, followed by a chemical reaction of the epoxy functionalities leading to thiols, and the attachment of preformed gold nanoparticles. We demonstrated that this very simple process produced uniform and reproducible large area surfaces that significantly enhance sensitivity of Raman spectroscopy. Experiments were also carried out that confirmed preferential adsorption of living bacteria Escherichia coli from a very dilute solution on the surface of the monolithic layer, and immediate detection of the captured microorganisms using the SERS spectrum.  相似文献   

6.
Yi Liang  Guo-Li Shen 《Talanta》2007,72(2):443-449
A novel, highly selective DNA hybridization assay has been developed based on surface-enhanced Raman scattering (SERS) for DNA sequences related to HIV. This strategy employs the Ag/SiO2 core-shell nanoparticle-based Raman tags and the amino group modified silica-coated magnetic nanoparticles as immobilization matrix and separation tool. The hybridization reaction was performed between Raman tags functionalized with 3′-amino-labeled oligonucleotides as detection probes and the amino group modified silica-coated magnetic nanoparticles functionalized with 5′-amino-labeled oligonucleotides as capture probes. The Raman spectra of Raman tags can be used to monitor the presence of target oligonucleotides. The utilization of silica-coated magnetic nanoparticles not only avoided time-consuming washing, but also amplified the signal of hybridization assay. Additionally, the results of control experiments show that no or very low signal would be obtained if the hybridization assay is conducted in the presence of DNA sequences other than complementary oligonucleotides related to HIV gene such as non-complementary oligonucleotides, four bases mismatch oligonucleotides, two bases mismatch oligonucleotides and even single base mismatch oligonucleotides. It was demonstrated that the method developed in this work has high selectivity and sensitivity for DNA detection related to HIV gene.  相似文献   

7.
In this study, polypyrrole (PPy) films were electrochemically deposited on gold substrates roughened by an electrochemical triangular-wave oxidation-reduction cycles (ORC) in an aqueous solution containing 0.1N KCl. Then the substrates were heated from 25 to 50 °C and the corresponding SERS performances of PPy were observed in situ. The results indicate that the SERS enhancement capabilities of substrates are gradually raised from 25 °C to a maximum at 40 °C and monotonically decreased from 40 to 50 °C. These SERS enhancement capabilities ascribed to the charge transfers from PPy to Au, which are responsible for the chemical effects of SERS mechanisms, are successfully observed via SERS and high resolution X-ray photoelectron spectroscopy (HRXPS) analyses. The variation in content of the oxidized PPy peak of the double peaks in the range of 1000-1150 cm−1 in SERS spectrum obtained on an Au substrate at different temperatures is consistent with its corresponding variation in the SERS intensity of PPy. The variation in content of the oxidized nitrogen of PPy deposited on an Au substrate at different temperatures revealed from an HRXPS analysis also confirms this consistence.  相似文献   

8.
Unsatisfactory sensitivity and stability for molecules with low polarizability is still a problem limiting the practical applications of surface-enhanced Raman scattering (SERS) technique. By preparing immobilized silver nanoparticles (Fe3O4/Ag) through depositing silver on the surface of magnetite particles, a highly sensitive and selective SERS method for the detection of trace glutathione (GSH) was proposed on the basis of a system of Fe3O4/Ag nanoparticles and crystal violet (CV), in which the target GSH competed with the CV probe for the adsorption on the Fe3O4/Ag nanoparticles. Raman insensitive GSH replaced the highly Raman sensitive CV adsorbed on the surface of Fe3O4/Ag particles. This replacement led to a strong decrease of the CV SERS signal, which was used to determine the concentration of GSH. Under optimal conditions, a linear response was established between the intensity decrease of the CV SERS signal and the GSH concentration in the range of 50–700 nmol L−1 with a detection limit of 40 nmol L−1. The use of a Fe3O4/Ag substrate provided not only a great SERS enhancement but also a good stability, which guarantees the reproducibility of the proposed method. Its use for the determination of GSH in practical blood samples and cell extract yielded satisfactory results.  相似文献   

9.
Herein, we present progress towards an analytical sensor for polycyclic aromatic hydrocarbons (PAHs) using surface-enhanced Raman scattering (SERS) on partition layer-modified nanostructured substrates. Specifically, a 1-decanethiol monolayer has been assembled on a silver film over nanospheres substrate to concentrate PAHs within the zone of SERS detection. Both anthracene and pyrene were detected with limits of detection at 300 and 700 pM, respectively. The measured SERS spectra allowed for easy distinction of the two PAH compounds, due to varying peak locations, and insight into the partitioning mechanism. Additionally, exposure to a common environmental interferant, Suwannee River fulvic acid, did not impede the measurement of the PAHs, and the sensor is reusable after a short exposure to 1-octanol. Finally, the utility of this sensing platform for PAH detection was compared to that achievable for other classes of organic pollutants such as polychlorinated biphenyls and polybrominated diphenyl ethers. Figure SERS detection of polycyclic aromatic hydrocarbons facilitated via partition layer modified substrates.
Christy L. HaynesEmail:
  相似文献   

10.
The black inkjet and laser prints were analysed with regard to application in forensic analysis of questioned documents. The purpose of this work was to study spectral properties and compare the suitability of surface-enhanced Raman scattering (SERS) with Fourier transform Raman spectra of prints. This work aimed to find optimal surface-enhanced Raman spectroscopic approach for the future analysis of documents using statistical methods. In this work, we analysed eight prints of four laser and four inkjet devices. The samples were measured using two dispersive Raman devices; (DXR Raman microscope with excitation line 532 nm, Foram 685-2 spectrometer − 685 nm) and FT-Raman device (Bruker Spectrometer MultiRAM with excitation line 1064 nm). The silver nanoparticles (AgNPs) colloid for SERS experiment were synthesised and checked by UV–vis spectroscopy and scanning electron microscopy (SEM). The remarkable differences caused by centrifugation of silver colloid were observed just in the SEM images. The main contribution of this paper is to propose the novel approach achieving sufficient SERS signal intensity of black prints using the both, laser and inkjet printers. Moreover, this method is based on just a single metal colloid, and the analysis can be performed in-situ, i.e. directly on the printed sample surface. We consider the SERS could by highly promising and universal for applications in the forensic analysis of printed documents with the combination of statistical method when conventional methods are not effective.  相似文献   

11.
The fabrication of effective surface-enhanced Raman scattering (SERS) substrates has been the subject of intensive research because of their useful applications. In this paper, dendritic gold (Au) rod (DAR) structures prepared by simple one-step electrodeposition in a short time were examined as an effective SERS-active substrate. The SERS activity of the DAR surfaces was compared to that of other nanostructured Au surfaces with different morphologies, and its dependence on the structural variation of DAR structures was examined. These comparisonal investigations revealed that highly faceted sharp edge sites present on the DAR surfaces play a critical role in inducing a high SERS activity. The SERS enhancement factor was estimated to be greater than 105, and the detection limit of rhodamine 6G at DAR surfaces was 10−8 M. The DAR surfaces exhibit excellent spot-to-spot and substrate-to-substrate SERS enhancement reproducibility, and their long-term stability is very good. It was also demonstrated that the DAR surfaces can be effectively utilized in electrochemical SERS systems, wherein a reversible SERS behavior was obtained during the cycling to cathodic potential regions. Considering the straightforward preparation of DAR substrates and the clean nature of SERS-active Au surfaces prepared in the absence of additives, we expect that DAR surfaces can be used as cost-effective SERS substrates in analytical and electrochemical applications.  相似文献   

12.
A study of the interaction between paraquat (methyl viologen) and humic acids, extracted from a soil amended over 30 years with crop residues, cow slurries and cattle manure, was carried out by two emission spectroscopies based on plasmonic effects: surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF). To carry out this study Ag nanoparticles were used. The complex formation was tested by analyzing the effect of the herbicide on humic acids, and by varying experimental parameters such as the pH and the laser excitation wavelength. The study of the vibrational bands led to infer information about the interaction mechanism of paraquat with humic acids and to find a correlation between this interaction and the humic acids structural modification induced by the different amendments added to soil.  相似文献   

13.
The addition of Bismuthiol II to the gold nanoparticles (AuNPs) solution led to the aggregation of AuNPs with a color change from red to blue. As a result, hot spots were formed and strong surface-enhanced Raman scattering (SERS) signal of Bismuthiol II was observed. However, the Bismuthiol II-induced aggregation of AuNPs could be reversed by Hg2+ in the system, accompanied by a remarkable color change from blue to red. As evidenced by UV–vis and SERS spectroscopy, the variation in absorption band and SERS intensity was strongly dependent on the concentration of Hg2+, suggesting a colorimetric and SERS dual-signal sensor for Hg2+. The sensor had a high sensitivity, low detection limits of 2 nM and 30 nM could be achieved by UV–vis spectroscopy and by SERS spectroscopy, respectively. Other environmentally relevant metal ions did not interfere with the detection of Hg2+. The method was successfully applied to detect Hg2+ in water samples. It was simple, rapid and cost-effective without any modifying or labeling procedure.  相似文献   

14.
Core–shell Ag@Pt nanoparticles have been synthesised by the means of seed-growth reaction including reduction of PtCl42− with silver and replacing Ag atoms with Pt. Surface-enhanced Raman scattering (SERS) spectra of pyridine (which gives slightly different spectra when interacting with various metals) adsorbed on synthesised Ag@Pt clusters were measured. SERS measurements have revealed that deposition of the platinum layer causes near elimination of the spectral interferences from pyridine directly interacting with the silver core. The average SERS enhancement factor for pyridine adsorbed on the Ag@Pt clusters was estimated as equal to about 103–104, significantly higher than the SERS enhancement factor achievable on the pure platinum nanostructures. Using the silver core (instead of the previously used gold cores) allows for measurement of strong SERS spectra on the Pt covered nanostructures for the wider range of the excitation radiation. This procedure of platinum deposition was tested with various silver nanoparticles – produced with borohydride, citrate and citrate/borohydride methods – which substantially differ in size distribution. The application of formed Ag@Pt structures for obtaining intense Raman spectra for molecules adsorbed on only slightly modified platinum surfaces is discussed.  相似文献   

15.
Ruan C  Wang W  Gu B 《Analytica chimica acta》2006,567(1):114-120
Perchlorate (ClO4) has recently emerged as a widespread environmental contaminant found in groundwater and surface water, and there is a great need for rapid detection and monitoring of this contaminant. This study presents a new technique using cystamine-modified gold nanoparticles as a substrate for surface-enhanced Raman scattering (SERS) detection of perchlorate at low concentrations. A detection limit of 5 × 10−6 M (0.5 mg/L) has been achieved using this method without sample preconcentration. This result was attributed to a strong plasmon enhancement by gold metal surfaces and the electrostatic attraction of ClO4 onto positively charged, cystamine-modified gold nanoparticles at a low pH. The methodology also was found to be reproducible, quantitative, and not susceptible to significant interference from the presence of anions such as sulfate, phosphate, nitrate and chloride at concentrations <1 mM, making it potentially suitable for rapid screening and routine analysis of perchlorate in environmental samples.  相似文献   

16.
Lei Liu  Xin Du 《中国化学快报》2021,32(6):1942-1946
Numerous nanocarriers have been currently developed for intracellular delivery. The potential cytotoxicity of these very small inorganic nanocarriers has raised great consideration. Thus, it becomes of utmost importance to conduct the intracellular trace of nanocarriers. Among many analytical techniques, surface enhanced Raman scattering(SERS) method is one of the current state-of-the-art techniques for cell visualization and trace. In this work, a novel stellate porous silica based gene delivery system has been designed for SERS trace purpose. A stellate porous silica nanoparticle modified with many small Au nanoparticles is designed to replace common metallic SERS tags. The results show that the designed system not only could deliver si RNA into cells for therapy, but also could realize SERS trace with high sensitivity and non-invasive features. The constructed delivery system has considerable potential to trace the dynamic gene delivery in living cells.  相似文献   

17.
In this work, the effects of electrolytes used in roughening gold substrates by electrochemical methods on surface-enhanced Raman scattering (SERS) were first investigated. First, gold substrates were roughened by triangular-wave oxidation–reduction cycles (ORC) in aqueous solutions containing different kinds of 0.1 M electrolytes. Then Rhodamine 6G (R6G) was used as Raman probe to examine this effect of electrolytes used on the SERS observed. The result indicates that the highest intensity of SERS of R6G was obtained on the roughened Au substrate prepared in 0.1 M NaCl, which was less used in the literature. Meanwhile, it was also found that the rougher surface morphology observed, which is contributive to the higher SERS obtained, is corresponding to the smaller cathodic peak area shown in the cyclic voltammograms for roughening the Au substrate.  相似文献   

18.
We demonstrate in this work that 2-μm-sized Ag (μAg) powders can be used as a core material for constructing biomolecular sensing/recognition units operating via surface-enhanced resonance Raman scattering (SERRS). This is possible because μAg powders are very efficient substrates for both the diffuse reflectance IR and the surface-enhanced Raman scattering–SERRS spectroscopic characterization of molecular adsorbates prepared in a similar manner on silver surfaces. Besides, the agglomeration of μAg particles in a buffer solution can be prevented by the layer-by-layer deposition of cationic and anionic polyelectrolytes such as poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA). In this particular study, we used rhodamine B isothiocyanate (RhBITC) as a SERRS marker molecule, and μAg powders adsorbed consecutively with RhBITC and PAH–PAA bilayers were finally derivatized with biotinylated poly(l-lysine). On the basis of the nature of the SERRS peaks of RhBITC, those μAg powders were confirmed to selectively recognize streptavidin molecules down to concentrations of 10−10 g mL−1. Since a number of different molecules can be used as SERS–SERRS marker molecules, the present method proves to be an invaluable tool for multiplex biomolecular sensing/recognition via SERS and SERRS.  相似文献   

19.
In this study, polypyrrole (PPy) films were electropolymerized under different preparation conditions on rough gold substrates. The peak shown at the higher frequency of the double peaks at about 1329 and 1386 cm–1 in surface-enhanced Raman scattering of PPy was initially assigned to the ring stretching of oxidized PPy. A systematic study was carried out to confirm this assignment. It was found that the conductivity of PPy was strongly related to and increased with this Raman peak intensity of oxidized PPy. Meanwhile, the normalized relative intensities of this Raman peak for various PPy films are consistent with their corresponding doping levels. Electronic Publication  相似文献   

20.
The effect of a roughening procedure on surface-enhanced Raman scattering (SERS) intensity of pyridine at copper and gold electrodes subjected to negative potential has been investigated. Among four procedures tested for a copper electrode the one consisting of electrochemical activation in a solution of LiCl and CuCl2 resulted in the most stable and effective surface. It was proved that the presence of pyridine during the pretreatment procedure caused a very fast, irreversible decay of SERS intensity for both copper and gold electrodes. Quite stable, at least at room temperatures, gold surfaces were obtained by oxidation-reduction cycles activation in KCl solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号