首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the classical semiempirical relationships between the electrophoretic mobility and the charge-to-mass ratio (me vs. q/Mα) were used to model the migration behaviour of peptides and glycopeptides originated from the digestion of recombinant human erythropoietin (rhEPO), a biologically and therapeutically relevant glycoprotein. The Stoke’s law (α = 1/3), the classical polymer model (α = 1/2) and the Offord’s surface law (α = 2/3) were evaluated to predict migration of peptides and glycopeptides, with and without sialic acids (SiA), in rhEPO digested with trypsin and trypsin–neuraminidase. The Stoke’s law resulted in better correlations for the set of peptides used to evaluate the models, while glycopeptides fitted better with the classical polymer model. Once predicted migration times with both models, it was easy to simulate their separation electropherogram. Results were later validated predicting migration and simulating separation of a different set of rhEPO glycopeptides and also human transferrin (Tf) peptides and glycopeptides. The excellent agreement between the experimental and the simulated electropherograms with rhEPO and Tf digests confirmed the potential applicability of this simple strategy to predict, in general, the peptide–glycopeptide electrophoretic map of any digested glycoprotein.  相似文献   

2.
Capillary electrophoresis-electrospray ionization-mass spectrometry has the potential to become a preferred tool for the analysis of biological mixtures and other complex samples. The development of improved interfaces in the past twenty years has been critical in demonstrating the feasibility of this technique. However, a compromise still exists between interfaces that give optimal performance and those that are practical for commercial applications. The first section of this review focuses on the technological advances in CE-ESI-MS as they relate to the key interface features for both sheath-flow and sheathless systems: delivery of the sheath liquid, shaping of the emitter tip, formation of electrical contact, and practicality in terms of ease of use and lifetime. In the second section, we review the fundamental processes that affect interface performance. Because of the complex natures of both capillary electrophoresis and electrospray ionization, flow rate, arrangement of the electrical circuit, electrochemistry, tip geometry and location of electrical contact must all be carefully managed in the design of a successful interface.  相似文献   

3.
Capillary zone electrophoresis in untreated fused silica capillaries has proved suitable for the determination of the ionization constants of weak electrolytes. Several fundamental equations relating the electrophoretic mobilities of ionized solutes to hydronium ion concentrations in the running electrolyte have been verified experimentally. The observed dependence of the electrophoretic mobilities of weak bases and ampholytes on the pH of the electrolyte showed good agreement with predicted behavior. The pKa values calculated from electrophoretic mobility data obtained by capillary zone electrophoresis were reasonably close to those reported in the literature.  相似文献   

4.
The combination of capillary electrophoresis (CE) and electrospray ionization-mass spectrometry (ESI-MS) via a triaxial interface was studied as a potential means for the characterization of intact proteins. To evaluate the possibility to use a nonvolatile electrolyte for CE, the effect of sodium phosphate and ammonium borate on the MS signal of the proteins insulin, myoglobin, and bovine serum albumin (BSA) was investigated by employing infusion experiments, and compared to the effect of ammonium formate and formic acid. The study shows that with formic acid (50 mM, pH 2.4) the most intense protein signals were obtained, while the use of sodium phosphate buffer (5 and 10 mM, pH 7.5) almost completely diminished the MS response. Ammonium formate and ammonium borate (up to 100 mM, pH 8.5) also caused protein ion suppression, but especially with the borate buffer significant MS intensity remained. MS analysis of myoglobin revealed the loss of the heme group when an acidic CE electrolyte was used. Using a background electrolyte containing 25 mM ammonium borate (pH 8.5), it is demonstrated that a CE separation of a protein test mixture can be monitored with ESI-MS without degrading the MS performance allowing molecular weight determinations of the separated compounds. In the presence of borate, detection limits were estimated to be 5-10 microM (ca. 100 fmol injected). The usefulness of the CE-MS system employing a borate buffer is indicated by the analysis of a stored sample of BSA revealing several degradation products. A sample of placental alkaline phosphatase (PLAP), a potential therapeutic agent, was also analyzed by CE-MS indicating the presence of a protein impurity. Probably due to insufficient ionization of the PLAP (a complex glycoprotein), no MS signals of the intact protein were observed.  相似文献   

5.
The presented study deals with the off-line coupling of preparative isotachophoresis (pITP) with on-line combination of capillary zone electrophoresis with electrospray mass spectrometric detection (CZE-ESI-MS) used for the analysis of therapeutic peptides (anserine, carnosine, and buserelin) in complex matrix (urine). Preparative capillary isotachophoresis, operating in a discontinuous fractionation mode in column-coupling configuration, served as a sample pretreatment technique to separation, and fractionation of mixture of therapeutic peptides present in urine at low concentration level. The fractions isolated by pITP procedure were subsequently analyzed by capillary zone electrophoresis with electrospray mass spectrometric detection. Acetic acid at 200 mmol L(-1) concentration served as background electrolyte in CZE stage and it is compatible with MS detection in positive ionization mode. In pITP fractionation procedure, sodium cation (10 mmol L(-1) concentration) as leading ion and beta-alanine as terminating ion (20 mmol L(-1) concentration) were used. While using CZE-ESI-MS, the limits of detection were 0.18 μg mL(-1) for carnosine, 0.17 μg mL(-1) for anserine and 0.64 μg mL(-1) for buserelin in water and 0.19 μg mL(-1) for carnosine, 0.50 μg mL(-1) for anserine and 0.74 μg mL(-1) for buserelin in 10 times diluted urine, respectively. The cleaning power of pITP sample pretreatment was proved as the peptides provided the higher MS signals at lower concentration levels resulting from the minimized matrix effects. The quality of obtained MS/MS spectra was very good so that they can provide information about the structure of analytes, and they were used for verification of the analytes identities. The pITP pretreatment improved the detection limits of the analyzed therapeutic peptides at least 25 times compared to the CZE-ESI-MS itself.  相似文献   

6.
We describe an analytical method involving solid-phase extraction (SPE) and capillary zone electrophoresis-electrospray ionization-mass spectrometry (CZE-ESI-MS) for determining some pharmaceutical compounds - naproxen, clofibric acid and bezafibrate - in real water samples. The electrospray parameters were optimized to maximize sensitivity. When a mixed aqueous-organic solvent and CZE-ESI-MS were used to analyze these drugs in water samples, the capillary was coated with hexadimethrin bromide (HDB) to permanently reverse the EOF. The method was developed from off-line SPE-CZE-MS and was validated with surface water. The detection limits were 100 ng.L(-1) for all analytes. The method was applied to analyze water samples from the influent and effluent of a sewage treatment plant. A liquid-liquid extraction step was required before SPE, and the compounds studied were found, some of them between detection and quantification limits.  相似文献   

7.
Summary Capillary zone electrophoresis (CZE) has been coupled with mass spectrometry to enable the identification of mineral and organometallic compounds of arsenic in speciation studies. The electrophoretic effluent was introduced through a concentric interface into the mass spectrometer. Make-up liquid was added to enable electric contact at the outlet of the separation capillary and to assist the electronebulization process. After ionization, the ions were analyzed and quantified with an ion-trap detector. Optimization of the coupling conditions (geometry of the concentric interface, composition and flow rate of the sheath liquid, electronebulization and detection conditions) is described. The results show that the geometry of the concentric interface and the positioning of the outlet of the separation capillary have a critical effect on stability and sensitivity. Programming the electronebulization and detection conditions throughout the analysis enabled identification and quantification of the seven arsenic compounds of interest (neutral, and positively or negatively charged species) in less than 20 min at the ppm level. Limits of detection ranged from 0.5 to 3.3 mg L−1, corresponding to amounts injected ranging from 15 to 60 pg. The linear dependence of mass spectrometric response on arsenic concentration was verified for concentrations ranging from 5 to 200 mgL−1. For the two positively charged species, arsenobetaine and arsenocholine, an on-line preconcentration technique (field-amplified sample injection) enabled reduction of the detection limits by approximately one order of magnitude to 110 and 160 μgL−1, respectively.  相似文献   

8.
Monolithically integrated, polymer (SU-8) microchips comprising an electrophoretic separation unit, a sheath flow interface, and an electrospray ionization (ESI) emitter were developed to improve the speed and throughput of metabolism research. Validation of the microchip method was performed using bufuralol 1-hydroxylation via CYP450 enzymes as the model reaction. The metabolite, 1-hydroxybufuralol, was easily separated from the substrate (R(s)=0.5) with very good detection sensitivity (LOD=9.3nM), linearity (range: 50-500nM, r(2)=0.9997), and repeatability (RSD(Area)=10.3%, RSD(Migrationtime)=2.5% at 80nM concentration without internal standard). The kinetic parameters of bufuralol 1-hydroxylation determined by the microchip capillary electrophoresis (CE)-ESI/mass spectrometry (MS) method, were comparable to the values presented in literature as well as to the values determined by in-house liquid chromatography (LC)-UV. In addition to enzyme kinetics, metabolic profiling was demonstrated using authentic urine samples from healthy volunteers after intake of either tramadol or paracetamol. As a result, six metabolites of tramadol and four metabolites of paracetamol, including both phase I oxidation products and phase II conjugation products, were detected and separated from each other within 30-35s. Before analysis, the urine samples were pre-treated with on-chip, on-line liquid-phase microextraction (LPME) and the results were compared to those obtained from urine samples pre-treated with conventional C18 solid-phase extraction (SPE, off-chip cartridges). On the basis of our results, the SU-8 CE-ESI/MS microchips incorporating on-chip sample pre-treatment, injection, separation, and ESI/MS detection were proven as efficient and versatile tools for drug metabolism research.  相似文献   

9.
The applicability of CZE with mass spectrometric detection for the determination of four chlorine species, namely chloride and three stable chlorine oxyanions, was studied. The main aspects of the proper selection of BGE and sheath liquid for the CE‐MS determinations of anions with high mobility were demonstrated, pointing out the importance of pH and the mobility of the anion in the BGE. The possibility of using uncoated fused silica capillary and common electrolytes for the separation was shown and the advantage of using extra pressure at the inlet capillary end was also presented. The linear range was found to be 1–100 µg/mL for ClO3? and ClO4?, 5–500 µg/mL for ClO2?, and 25–500 µg/mL for Cl?, but the sensitivity can be greatly improved if larger sample volume is injected and electrostacking effect is utilized. The LOD for ClO3? in drinking water was 6 ng/mL, when very large sample volume was injected (10 000 mbar·s was applied).  相似文献   

10.
Capillary electrophoresis (CE) was compared with reversed-phase liquid chromatography for its ability to separate native and deamidated peptides. CE is shown to provide superior resolution of these peptides due to its charge-based separation mechanism. Fraction collection performed using a standard CE instrument equipped with a 96-well plate permits subsequent characterization by nanospray mass spectrometric (MS) analysis. Additional in-depth analysis by MS/MS is able to provide the location of the deamidation site based on y-ion mass shifts of 1 Da.  相似文献   

11.
Capillary electrophoresis (CE) offers fast and high‐resolution separation of charged analytes from small injection volumes. Coupled to mass spectrometry (MS), it represents a powerful analytical technique providing (exact) mass information and enables molecular characterization based on fragmentation. Although hyphenation of CE and MS is not straightforward, much emphasis has been placed on enabling efficient ionization and user‐friendly coupling. Though several interfaces are now commercially available, research on more efficient and robust interfacing with nano‐electrospray ionization (ESI), matrix‐assisted laser desorption/ionization (MALDI) and inductively coupled plasma mass spectrometry (ICP) continues with considerable results. At the same time, CE‐MS has been used in many fields, predominantly for the analysis of proteins, peptides and metabolites. This review belongs to a series of regularly published articles, summarizing 248 articles covering the time between June 2016 and May 2018. Latest developments on hyphenation of CE with MS as well as instrumental developments such as two‐dimensional separation systems with MS detection are mentioned. Furthermore, applications of various CE‐modes including capillary zone electrophoresis (CZE), nonaqueous capillary electrophoresis (NACE), capillary gel electrophoresis (CGE) and capillary isoelectric focusing (CIEF) coupled to MS in biological, pharmaceutical and environmental research are summarized.  相似文献   

12.
The analysis of the chemical composition of fingerprints is important for the development and improvement of existing fingerprint enhancement techniques. This study demonstrates the first analysis of a latent fingerprint sample, using an optimized CE‐MS method. In total 12 amino acids were detected in the fingerprint sample. MS/MS fragmentation was used to provide additional identity confirmation, for which eight of the twelve detected amino acids generated confirmatory product ions. Nine amino acids were quantified and their relative abundances were consistent with previous studies with serine and glycine being the most abundant. The successful detection of amino acids from latent fingerprints demonstrates that CE‐MS is a potential future technique for further study of such compounds in fingerprint samples.  相似文献   

13.
Capillary zone electrophoresis coupled with electrospray ionization mass spectrometry (CZE–ESI-MS) has been applied for the first time for the separation and quantification of isoflavones in soy products. The proposed method was successfully applied to the determination of seven isoflavones, including aglycones and glucosides, in soy drink. The target compounds were the glucosides daidzin and genistin, and the aglycones daidzein, genistein, formononetin, biochanin A and glycitein. During CE separation in positive mode, the analytes were present as anions, and MS detection was carried out in ESI positive-ion mode. To prevent the frequent drops in current and to improve the resolution in the separation of analytes in anionic form, a programmed nebulizing gas pressure (PNP) was applied along the analysis.  相似文献   

14.
A CE separation of hydrophobic peptides followed by fractionation onto a prestructured MALDI target and off-line MS analysis was performed. An improved and partially automated manufacturing procedure of the previously described MALDI target is presented. This target is structurally coated with silicone and especially developed for hydrophobic peptides and proteins. Here, the target plate was designed specifically for the CE fraction collection. Different solvents were evaluated to meet the requirements of peptide solubility and compatibility to both the CE and MALDI methods and to the fractionation procedure. CE-MALDI-MS analysis of nine highly hydrophobic peptides from cyanogen bromide-digested bacteriorhodopsin is demonstrated.  相似文献   

15.
The performance of a prototype porous tip sprayer for sheathless capillary electrophoresis-mass spectrometry (CE-MS) of intact proteins was studied. Capillaries with a porous tip were inserted in a stainless steel needle filled with static conductive liquid and installed in a conventional electrospray ionization (ESI) source. Using a BGE of 100 mM acetic acid (pH 3.1) and a positively charged capillary coating, a highly reproducible and efficient separation of four model proteins (insulin, carbonic anhydrase II, ribonuclease A and lysozyme) was obtained. The protein mass spectra were of good quality allowing reliable mass determination of the proteins and some of their impurities. Sheath-liquid CE-MS using the same porous tip capillary and an isopropanol-water-acetic acid sheath liquid showed slightly lower to similar analyte responses. However, as noise levels increased with sheath-liquid CE-MS, detection limits were improved by a factor 6.5-20 with sheathless CE-MS. The analyte response in sheathless CE-MS could be enhanced using a nanoESI source and adding 5% isopropanol to the BGE, leading to improved detection limits by 50-fold to 140-fold as compared to sheath liquid interfacing using the same capillary - equivalent to sub-nM detection limits for three out of four proteins. Clearly, the sheathless porous tip sprayer provides high sensitivity CE-MS of intact proteins.  相似文献   

16.
Capillary zone electrophoretic (CZE) separations and mass spectrometric analysis of salmon calcitonin and related analogues were performed to generate electrophoresis and mass fingerprints for quality control of the recombinant polypeptide pharmaceutical salmon calcitonin. The calcitonins and their corresponding tryptic digests were successfully separated by CZE at low pH in fused silica capillaries dynamically modified with poly-cationic polymers. The poly-cationic modified inner surface of the fused silica capillaries generated a strong anionic electroosmotic flow (EOF). Analytes of negative, neutral, and positive charge were all swept through the capillary toward the positive electrode. Compared to Polybrene-coated capillaries, capillaries coated with PEI showed a markedly slower but much more stable electroosmotic flow. The migration order of the analytes was predicted by comparing approximate values of the charge to (molecular mass)2/3 ratios. The predicted migration order was confirmed by off-line analysis of CZE fractions with matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS).  相似文献   

17.
N. Chen  L. Wang  Y. K. Zhang 《Chromatographia》1993,37(7-8):429-432
Summary A series of small peptides containing varying degree of charge and size was used to study the effects of physicochemical properties on migration in free-solution capillary electrophoresis (FSCE). A semiempirical relationship between migration time under acidic conditions and the square root of molecular weight divided by the quantity of the number of the positively ionizable groups has been established. The ionization of the carboxyl terminal group in the polypeptides is negligible under acidic conditions. The relationship developed from this work has been used for the prediction of migration parameters in free solution capillary electrophoresis.  相似文献   

18.
Zhang Z  Wang J  Hui L  Li L 《Journal of chromatography. A》2011,1218(31):5336-5343
Herein we report a highly efficient and reliable membrane-assisted capillary isoelectric focusing (MA-CIEF) system being coupled with MALDI-FTMS for the analysis of complex neuropeptide mixtures. The new interface consists of two membrane-coated joints made near each end of the capillary for applying high voltage, while the capillary ends were placed in the two reservoirs which were filled with anolyte (acid) and catholyte (base) to provide pH difference. Optimizations of CIEF conditions and comparison with conventional CIEF were carried out by using bovine serum albumin (BSA) tryptic peptides. It was shown that the MA-CIEF could provide more efficient, reliable and faster separation with improved sequence coverage when coupled to MALDI-FTMS. Analyses of orcokinin family neuropeptides from crabs Cancer borealis and Callinectes sapidus brain extracts have been conducted using the established MA-CIEF/MALDI-FTMS platform. Increased number of neuropeptides was observed with significantly enhanced MS signal in comparison with direct analysis by MALDI-FTMS. The results highlighted the potential of MA-CIEF as an efficient fractionation tool for coupling to MALDI MS for neuropeptide analysis.  相似文献   

19.
A simple and cost-effective capillary electrophoresis/mass spectrometric (CE/MS) method for the analysis of small carboxylic acids including succinate, malate, tartarate, maleinate and citrate, is described. All CE/MS experiments were performed with uncoated fused-silica capillaries and with alkaline volatile buffer solution (ammonium formate buffer, pH 10). Since sheath liquids have significant effects on the sensitivity in typical CE/MS applications, the effects of type and flow rate of the sheath liquids on the sensitivity of carboxylic acids were investigated. As the result, the best sensitivity was obtained with the alkaline sheath liquid (5 mM ammonium hydroxide in water/methanol (50/50, v/v) solution) at 6 μl min−1. With the alkaline volatile buffer solution, sufficient electroosmotic flow (EOF) to carry all small carboxylic acids toward the cathode (MS side) was obtained, although all analytes had different electrophoretic mobilities toward the anode (the CE inlet). Taking advantage of the relatively higher EOF velocity, several carboxylic acids could be detected by MS in ESI-negative mode with a short analysis time. The R.S.D. values (n=5) for the migration time and the peak area of the carboxylic acids tested were less than 0.6 and 4.2%, respectively. The method was applied to the CE/MS analysis of carboxylic acids in apple juice to demonstrate the applicability to real samples.  相似文献   

20.
In this study, positively charged alkylaminosilyl monomers were used to modify the inner surface of fused silica capillaries, which subsequently were employed in capillary electrophoresis (CE) and capillary electrochromatography (CEC). The obtained surfaces yield a reversed electroosmotic flow (EOF) and have varying carbon chain lengths, that interact with the analytes and give chromatographic retention. The coating procedure is very simple and fast. The performance of the modified capillaries was evaluated regarding pH influence on EOF and chromatographic interactions. The experiments were conducted with UV and mass spectrometry (MS) and applied to the separation of various neuropeptides. The derivatized surfaces showed a linear (R(2) approximately 0.99) pH dependence with isoelectric points (pI) at 8.6-8.8. Rapid separations of peptide standards and a protein digest with efficiencies as high as 5 x 10(5) plates/m were performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号