首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2005,17(2):127-133
Fast scan voltammetry applied to methylmercury in chloride medium at a carbon fiber microelectrode has shown two cathodic peaks located at ?0.45 and ?1.1 V and a single anodic peak at ?0.33 V (vs. Ag|AgCl). It was concluded that the reoxidation process, at high sweep rates, in acidic media behaves as a reversible one‐electron transfer process coupled to a chemical reaction, with the reaction product weakly adsorbed. Good linear calibration plots for the methylmercury determinations in the concentration range from 75 to 300 μM, have been obtained using the currents of the anodic peak measured on the CVs recorded, at 10 V s?1, at a carbon fiber microelectrode, in a stationary solution of methylmercury chloride. Data have shown that the carbon microelectrode, cycled continuously in the analyte, can replace the dropping mercury electrode (DME), with the advantages that the carbon microelectrode is a promising tool for further studies in high resistive media, such as in natural waters.  相似文献   

2.
在抗坏血酸存在下用L-赖氨酸修饰玻碳电极测定多巴胺   总被引:3,自引:0,他引:3  
黄燕生  陈静  许兵  邵会波 《化学通报》2006,69(9):656-660
采用电化学氧化法制备了L-广赖氮酸单分子层修饰玻碳电极,研究了多巴胺(DA)和抗坏血酸(AA)在该电极上的电化学行为。结果表明,L-广赖氨酸单分子层修饰玻碳电极不仅能改善多巴胺和抗坏血酸的电化学行为,而且能将多巴胺和抗坏血酸二者在裸电极上的完全重叠的单氧化峰分开成为两个完全独立的氧化峰,循环伏安(CV)图上峰间距为507mV,差分脉冲伏安(DPV)图上峰间距为460mV,由此可实现在AA的共存下对样品中的DA进行选择性测定。  相似文献   

3.
The electrochemical response of sodium levo‐thyroxin (T4) at the surface of an edge plane pyrolytic graphite (EPPG) electrode is investigated using cyclic voltammetric technique in the presence of 0.1 M HCl as supporting electrolyte. T4 underwent totally irreversible oxidation at this system and a well‐defined peak at 821 mV was obtained. Compared to the signals obtained in the optimized conditions at bare glassy carbon and carbon paste electrodes, the oxidation current of T4 at an EPPG electrode was greatly enhanced. The electrochemical process of T4 was explored and the experimental conditions were optimized. The oxidation peak current represented a linear dependence on T4 concentration from 0.01 to 10 µM. The detection limit of 3 nM (S/N=3) was obtained for 250 s accumulation at 0.3 V. Determination of T4 in a synthetic serum sample demonstrated that this sensor has good selectivity and high sensitivity.  相似文献   

4.
A simple,sensitive,and reliable method for the voltammetric determination of bisphenol A(BPA) by using carboxylic group functionalized single-walled carbon nanotubes(f-SWCNT)/carboxylic-functionalized poly(3,4-ethylenedioxythiophene)(PC4) complex modified glassy carbon electrode(GCE) has been successfully developed.The electrochemical behavior of BPA at the surface of the modified electrode is investigated by electrochemical techniques.The cyclic voltammetry results show that the as-prepared electrode exhibits strong catalytic activity toward the oxidation of BPA with a well-defined anodic peak at 0.623 V in PBS(0.1 mol/L,pH 7.0).The surface morphology of the 3D network of composite film is beneficial for the adsorption of analytes.Under the optimized conditions,the oxidation peak current is proportional to BPA concentration in the range between 0.099 and 5.794 μmol/L(R~2 = 0.9989),with a limit of detection of 0.032 μmol/L(S/N = 3).The enhanced performance of the sensor can be attributed to the excellent electrocatalytic property of/-SWCNT and the extraordinary conductivity of PC4.Furthermore,the proposed modified electrode displays high stability and good reproducibility.The good result on the voltammetric determination of BPA also indicates that the asfabricated modified electrode will be a good candidate for the electrochemical determination and analysis of BPA.  相似文献   

5.
建立了快速测定盐酸金霉素(CTC)的方法。通过NaBH4还原法制备纳米银(AgNPs)溶胶,并利用X射线衍射和紫外-可见光谱进行表征。将制备好的AgNPs滴涂到玻碳电极表面制备修饰电极(AgNPs/GCE),研究了CTC在AgNPs/GCE上的电化学行为及伏安法测定,优化了缓冲溶液和pH等检测条件。结果表明,CTC在pH 3.3的柠檬酸-NaOH-HCl缓冲溶液中检测效果最佳。CTC在AgNPs/GCE上发生2个电子和2个质子的不可逆电化学氧化反应,且反应受吸附控制。最佳条件下,CTC的氧化峰电流与其浓度呈现良好的线性关系,线性范围为0.5~100μmol/L,检出限为0.14μmol/L。该修饰电极可用于河水样品检测。  相似文献   

6.
Shahrokhian S  Rastgar S 《The Analyst》2012,137(11):2706-2715
Mixtures of gold-platinum nanoparticles (Au-PtNPs) are fabricated consecutively on a multi-walled carbon nanotubes (MWNT) coated glassy carbon electrode (GCE) by the electrodeposition method. The surface morphology and nature of the hybrid film (Au-PtNPs/MWCNT) deposited on glassy carbon electrodes is characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The modified electrode is used as a new and sensitive electrochemical sensor for the voltammetric determination of cefotaxime (CFX). The electrochemical behavior of CFX is investigated on the surface of the modified electrode using linear sweep voltammetry (LSV). The results of voltammetric studies exhibited a considerable improvement in the oxidation peak current of CFX compared to glassy carbon electrodes individually coated with MWCNT or Au-PtNPs. Under the optimized conditions, the modified electrode showed a wide linear dynamic range of 0.004-10.0 μM with a detection limit of 1.0 nM for the voltammetric determination of CFX. The modified electrode was successfully applied for the accurate determination of trace amounts of CFX in pharmaceutical and clinical preparations.  相似文献   

7.
In spite of the many unstandardized literature methods for the determination of the antioxidant activity/capacity (AOA/AOC) of food extracts, there are a very limited number of documented voltammetric nanosensors, despite the fact that commercial electrochemical devices for rapid AOA estimation are on the rise. The mechanism of the developed sensor is based on the chemical reduction of hexacyanoferrate(III) to hexacyanoferrate(II) by antioxidants, followed by the decrement of the cathodic current intensity of hexacyanoferrate(III) in proportion to antioxidant concentration. During voltammetric measurements, the surface of the glassy carbon electrode was coated with an o-phenylenediamine-aniline copolymer and gold nanoparticles were accumulated on this electrode surface to increase the conductivity. It was shown that the developed electrode gave a reversible voltammogram for the hexacyanoferrate(III)/(II) redox couple, and that the cathodic peaks due to strong antioxidants having a standard redox potential less than that of this couple (Eo < 0.36 V) continuously emerged at very close peak potentials. Single antioxidants as well as binary–ternary mixtures were analyzed with this electrode using square wave voltammetry. The trolox-equivalent antioxidant capacities of selected antioxidants were evaluated with this electrode. The modified voltammetric sensor allowed precise measurement of the total antioxidant capacity of plant tea samples such as green tea, lime, and coral moss, and was not interfered by the food preservative sulfite. The results of the developed voltammetric sensor were statistically compared with those of a reference differential pulse voltammetry-cupric reducing antioxidant capacity electrochemical method established in literature.  相似文献   

8.
聚吡咯/亚铁氰化钾/碳纳米管修饰电极检测亚硝酸根   总被引:1,自引:1,他引:1  
采用循环伏安法在滴涂碳纳米管的电极表面制备了聚吡咯/K4Fe(CN)6复合膜,研究了该电极的电化学性质及对NO2-的电催化还原。结果表明,固定于聚吡咯膜中的K4Fe(CN)6作为电子递质与碳纳米管和聚吡咯对NO2-电还原具有协同催化作用,安培法检测NO2-的线性范围为1.5×10-6~1.8×10-3mol/L,检出限为3.0×10-7mol/L,该法已用模拟水样中NO-的测定。  相似文献   

9.
Yılmaz S  Uslu B  Ozkan SA 《Talanta》2001,54(2):351-360
A voltammetric study of the oxidation of etodolac has been carried out at the glassy carbon electrode. The electrochemical oxidation of etodolac was investigated by cyclic, linear sweep, differential pulse and square wave voltammetry using glassy carbon electrode. Different parameters were tested to optimize the conditions for the determination of etodolac. The dependence of intensities of currents and potentials on pH, concentration, scan rate, nature of the buffer was investigated. For analytical purposes, a very well resolved diffusion controlled voltammetric peak was obtained in Britton-Robinson buffer at pH 2.15 for differential pulse and square wave voltammetric techniques. The linear response was obtained in the ranges of 2.10(-6)-8.10(-5) M with a detection limit of 6.8x10(-7) and 6x10(-6)-8x10(-5) M with a detection limit of 1.1x10(-6) M for differential pulse and square wave voltammetric techniques, respectively. Based on this study, simple, rapid, selective and sensitive two voltammetric methods were developed for the determination of the etodolac in tablet dosage form and human serum.  相似文献   

10.
An electrochemical oxidation of acetaminophen (ACOP) has been successfully performed by using glassy carbon electrode covered with 4-hydroxyquinoline-3-carboxylic acid (4HQ3CA) to reinforce electrode's feature. To characterize the modified electrode (4HQ3CA/GC), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and Fourier transform infrared spectroscopy (FT-IR) techniques were used. The finding optimum conditions (supporting electrolyte, pH) and the electrochemical determination studies were performed with differential pulse voltammetry (DPV). It was decided that the supporting electrolyte medium suitable for ACOP determination was Britton-Robinson (BR) buffer and the effect of pH change on the oxidation peak of ACOP in this media was investigated. The effect of changing scan rate on the oxidation peak of ACOP was examined and this study showed that the oxidation process of ACOP on the 4HQ3CA/GC modified electrode surface was diffusion and adsorption controlled process. A wide concentration range from 0.0025 μM to 141 μM with a limit of detection (LOD) of 5.98×10−10 M (3 s/m) was obtained. This prepared sensor was carried out for the determination of ACOP in pharmaceutical sample.  相似文献   

11.
银掺杂聚L-天冬氨酸修饰电极的制备及对肾上腺素的测定   总被引:1,自引:0,他引:1  
陈高礼  马伟  孙登明 《应用化学》2010,27(3):353-357
利用循环伏安法,研究了银和L-天冬氨酸在玻碳电极表面电化学聚合的条件,制备了银掺杂聚L-天冬氨酸修饰电极。研究了肾上腺素在修饰电极上的电化学行为,建立了循环伏安法测定肾上腺素的新方法。在pH=3.5的磷酸盐缓冲溶液中,扫描速率为50mV/s时,肾上腺素在修饰电极上产生一对明显的氧化还原峰,峰电位分别为Epa=0.447V,Epc=0.387V。用循环伏安法测定时,氧化峰电流与肾上腺素浓度分别在8.00×10-8~1.00×10-5mol/L和1.00×10-5~1.00×10-4mol/L范围内呈良好的线性关系,检出限为8.0×10-9mol/L。  相似文献   

12.
以三聚氰胺为原料,利用热缩聚法制备了类石墨氮化碳(g-C_3N_4),并采用X射线衍射(XRD)、扫描电镜(SEM)、红外光谱等方法对其进行表征。然后将g-C_3N_4超声分散于Nafion溶液中,将所得悬浊液修饰到玻碳电极上,制备用于检测硝基苯的电化学传感器(g-C_3N_4/Nafion/GCE)。采用循环伏安法、方波伏安法研究了硝基苯在该电极上的电化学行为。在优化实验条件下,硝基苯在该电极上的方波伏安还原峰电流与其浓度在4.0×10~(-6)~6.0×10-4mol/L范围内呈良好的线性关系,相关系数(r)为0.999 8,检出限为4.0×10~(-7)mol/L。按照国家标准方法对实际水样进行检测,未检测出硝基苯。配制两个浓度水平硝基苯的模拟水样进行加标回收实验,其回收率分别为102.1%和99.9%。用气相色谱法做对照实验,结果表明本方法与气相色谱法的测定结果无显著性差异。  相似文献   

13.
纳米碳管电极上氧的电催化还原   总被引:5,自引:0,他引:5  
以聚四氟乙烯为粘结剂制成了多壁纳米碳管(MWNT)电极.采用恒电位阶跃法和循环伏安法研究了MWNT电极在碱性溶液中的电化学行为,并对碱性溶液中溶解氧在该电极上的电化学还原行为进行了研究.实验结果表明: MWNT电极具有比石墨电极更高的孔隙率和电化学表面积;MWNT电极上O2还原成的反应为准可逆过程;在5~50 mV•s-1的扫描速率范围内,阴极峰电流与扫描速度成线性关系,表明MWNT电极上O2还原成的反应受吸附控制;对碱性溶液中的氧还原反应, MWNT比石墨具有更高的催化活性.  相似文献   

14.
Direct electrochemical reduction of p-nitrophenol(PNP)was investigated on a room temperature ionic liquid N-butylpyridinium hexafluorophosphate(BPPF6)modified carbon paste electrode(CILE).The cathodic peak potential was positively shifted and the peak currents were increased compared to that obtained on traditional carbon paste electrode(CPE).The results indicated that the presence of ionic liquid BPPF6 on the electrode surface showed excellent catalytic ability to the electrochemical reduction of PNP.The electrochemical behaviors of PNP on the CILE were investigated by cyclic voltammetry and the conditions such as the scan rate,the buffer pH,the substrate concentration were optimized.The electrochemical parameters were further calculated with the results of the electron transfer number(n),the charge-transfer coefficient(α)and the surface concentration(ΓΥ)as 1.76,0.37 and 2.47×10-9 mol/cm2,respectively,for the selected reducfive peak.The results indicated that PNP showed all irreversible adsorption-controlled electrode process on the CILE.  相似文献   

15.
《Analytical letters》2012,45(17):3088-3099
Abstract

Iron nanoparticles (INPs) were dispersed in Nafion solution to obtain a homogeneous INP-Nafion dispersion, and then a drop of this dispersion was cast on the surface of a carbon paste electrode (CPE) to fabricate an INP-Nafion-modified electrode. The electrochemical behavior of dopamine (DA) at this modified electrode was studied by cyclic voltammetry in a pH 7.0 Britton-Robinson (B-R) buffer solution. The result showed that the modified CPE exhibited an obvious electrocatalytical response toward DA, with the anodic and cathodic peak potentials shifted negatively and positively respectively, and great enhance of the peak currents at the scan rate of 100 mV s?1. The effects of carbon paste constitution, amount of the dispersion, pH, and scan rate were investigated. Under the optimum experimental conditions, the peak currents determined by differential pulse voltammetry showed an excellent linear relationship with DA concentration in the range from 10 to 110 µM with the detection limit of 3.3 µM. In addition, ascorbic acid and some other possible interferents did not interfere with the voltammetric sensing of DA, and this method also had good stability and reproducibility.  相似文献   

16.
Herein, an adsorptive stripping linear sweep voltammetric technique was described to determine spiramycin, a macrolide antibiotic, using a carboxylic multiwalled glassy carbon electrode modified with carbon nanotubes. The main principle of the analytical methodology proposed was based on the preconcentration of spiramycin by open-circuit accumulation of the macrolide onto the modified electrode surface. As a result of the adsorption affinity of spiramycin to the modified surface, the sensitivity of the glassy carbon electrode was significantly increased for the determination of spiramycin. The electrochemical behavior of spiramycin was evaluated by cyclic voltammetry and the irreversible anodic peak observed was measured as an analytical signal in the methodology. The proposed electrochemical sensing platform was quite linear in the range of 0.100–40.0 µM of spiramycin concentration with a correlation coefficient of 0.9993. The limit of detection and the limit of quantification were 0.028 and 0.094 µM, respectively. The intra- and interday repeatability of the proposed sensor was within acceptable limits. Finally, the applicability of the electrochemical methodology was examined by determining the drug content of chicken egg samples spiked with spiramycin standard. A rapid and easy extraction technique was performed to extract spiked spiramycin from the egg samples. The extraction technique followed had good recovery values between 85.3 ± 4.0% and 93.4 ± 1.9%.  相似文献   

17.
A carbon paste electrode (CPE) modified with ferrocene carboxylic acid (FcCA) and TiO2 nanoparticles was constructed by incorporating TiO2 nanoparticles and ferrocene carboxylic acid into the carbon paste matrix.The electrochemical behavior of captopril (CAP) at the surface of the modified electrode was investigated using electroanalytical methods.The modified electrode showed excellent electrocatalytic activity for the oxidation of CAP in aqueous solutions at physiological pH values.Cyclic voltammetric curves showed that the oxidation of CAP at the surface of the modified electrode reduced its overpotential by more than 290 mV.The modified electrode was used for detecting captopril using cyclic voltammetry and square wave voltammetry techniques.A calibration curve in the range of 0.03 to 2400μmol/L was obtained that had a detection limit of 0.0096 μmol/L (3σ) under the optimized conditions.The modified electrode was successfully used for the determination of captopril in pharmaceutical and biological samples.  相似文献   

18.
The electrochemical behavior of aspirin at a graphene modified glassy carbon electrode has been investigated using cyclic and differential pulse voltammetric techniques. The dependence of the current on pH, concentration and scan rate was investigated to optimize the experimental conditions for determination of aspirin. A plausible oxidation mechanism was proposed. Under the optimum conditions, the oxidation peak current was linearly proportional to the concentration of aspirin in the range from 1.00×10?6 to 2.00×10?4 M with a detection limit of 20.2 nM. The proposed method was successfully applied to aspirin determination in pharmaceutical and real samples.  相似文献   

19.
In this study, a simple and sensitive square wave voltammetric procedure has been developed for the determination of acemetacin (ACM) at graphite flake paste electrode (GFPE) and glassy carbon electrode (GCE). Under optimized conditions, the dependence of ACM peak current on its concentration showed wide linear range: 0.03–1.0 μmol L−1 and 0.7–15.0 μmol L−1 at GFPE and GCE, respectively. The developed method was successfully applied for the determination of ACM in pharmaceuticals and spiked urine with satisfying recoveries. The electrochemical oxidation of ACM is an irreversible process controlled by mixed nature of the mass transfer process.  相似文献   

20.
Direct electrochemical reduction ofp-nitrophenol (PNP) was investigated on a room temperature ionic liquid N-butylpyridinium hexafluorophosphate (BPPF6) modified carbon paste electrode (CILE). The cathodic peak potential was positively shifted and the peak currents were increased compared to that obtained on traditional carbon paste electrode (CPE). The results indicated that the presence of ionic liquid BPPF6 on the electrode surface showed excellent catalytic ability to the electrochemical reduction of PNP. The electrochemical behaviors of PNP on the CILE were investigated by cyclic voltammetry and the conditions such as the scan rate, the buffer pH, the substrate concentration were optimized. The electrochemical parameters were further calculated with the results of the electron transfer number (n), the charge-transfer coefficient (α) and the surface concentration (Гr) as 1.76, 0.37 and 2.47 × 10^-9 mol/cm^2, respectively, for the selected reductive peak. The results indicated that PNP showed an irreversible adsorption-controlled electrode process on the CILE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号