首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We report for the first time the synthesis of bismuth-modified (3-mercaptopropyl) trimethoxysilane (MPTMS) and its application for the determination of lead and cadmium by anodic stripping voltammetry. Xerogels made from bismuth-modified MPTMS and mixtures of it with tetraethoxysilane, under basic conditions (NH3·H2O), were characterized with scanning electron microscopy, energy dispersive spectroscopy, infrared spectroscopy and electrochemical methods. Bismuth-modified xerogels were mixed with 1.5% (v/v) Nafion in ethanol and applied on glassy carbon electrodes. During the electrolytic reductive deposition step, the bismuth compound on the electrode surface was reduced to metallic bismuth. The target metal cations were simultaneously reduced to the respective metals and were preconcentrated on the electrode surface by forming an alloy with bismuth. Then, an anodic voltammetric scan was applied in which the metals were oxidized and stripped back into the solution; the voltammogram was recorded and the stripping peak heights were related to the concentration of Cd(II) and Pb(II) ions in the sample. Various key parameters were investigated in detail and optimized. The effect of potential interferences was also examined. Under optimum conditions and for preconcentration period of 4 min, the 3σ limit of detection was 1.3 μg L−1 for Pb(II) and 0.37 μg L−1 for Cd(II), while the reproducibility of the method was 4.2% for lead (n = 5, 10.36 μg L−1 Pb(II)) and 3.9% for cadmium (n = 5, 5.62 μg L−1 Cd(II)). Finally, the sensors were applied to the determination of Cd(II) and Pb(II) ions in water samples.  相似文献   

2.
A cost-effective sequential injection system incorporating with an in-line UV digestion for breakdown of organic matter prior to voltammetric determination of Zn(II), Cd(II), Pb(II) and Cu(II) by anodic stripping voltammetry (ASV) on a hanging mercury drop electrode (HMDE) of a small scale voltammetric cell was developed. A low-cost small scale voltammetric cell was fabricated from disposable pipet tip and microcentrifuge tube with volume of about 3 mL for conveniently incorporated with the SI system. A home-made UV digestion unit was fabricated employing a small size and low wattage UV lamps and flow reactor made from PTFE tubing coiled around the UV lamp. An in-line single standard calibration or a standard addition procedure was developed employing a monosegmented flow technique. Performance of the proposed system was tested for in-line digestion of model water samples containing metal ions and some organic ligands such as strong organic ligand (EDTA) or intermediate organic ligand (humic acid). The wet acid digestion method (USEPA 3010a) was used as a standard digestion method for comparison. Under the optimum conditions, with deposition time of 180 s, linear calibration graphs in range of 10-300 μg L−1 Zn(II), 5-200 μg L−1 Cd(II), 10-200 μg L−1 Pb(II), 20-400 μg L−1 Cu(II) were obtained with detection limit of 3.6, 0.1, 0.7 and 4.3 μg L−1, respectively. Relative standard deviation were 4.2, 2.6, 3.1 and 4.7% for seven replicate analyses of 27 μg L−1 Zn(II), 13 μg L−1 Cd(II), 13 μg L−1 Pb(II) and 27 μg L−1 Cu(II), respectively. The system was validated by certified reference material of trace metals in natural water (SRM 1640 NIST). The developed system was successfully applied for speciation of Cd(II) Pb(II) and Cu(II) in ground water samples collected from nearby zinc mining area.  相似文献   

3.
The biosorption of copper(II), lead(II), iron(III) and cobalt(II) on Bacillus sphaericus-loaded Diaion SP-850 resin for preconcentration-separation of them have been investigated. The sorbed analytes on biosorbent were eluted by using 1 mol L−1 HCl and analytes were determined by flame atomic absorption spectrometry. The influences of analytical parameters including amounts of pH, B. sphaericus, sample volume etc. on the quantitative recoveries of analytes were investigated. The effects of alkaline, earth alkaline ions and some metal ions on the retentions of the analytes on the biosorbent were also examined. Separation and preconcentration of Cu, Pb, Fe and Co ions from real samples was achieved quantitatively. The detection limits by 3 sigma for analyte ions were in the range of 0.20-0.75 μg L−1 for aqueous samples and in the range of 2.5-9.4 ng g−1 for solid samples. The validation of the procedure was performed by the analysis of the certified standard reference materials (NRCC-SLRS 4 Riverine Water, SRM 2711 Montana soil and GBW 07605 Tea). The presented method was applied to the determination of analyte ions in green tea, black tea, cultivated mushroom, boiled wheat, rice and soil samples with successfully results.  相似文献   

4.
In this study a new method for determination of cadmium in alcohol fuel using Moringa oleifera seeds as a biosorbent in an on-line preconcentration system coupled to flame atomic absorption spectrometry (FAAS) was developed. Flow and chemical variables of the proposed system were optimized through multivariate designs. The limit of detection for cadmium was 5.50 μg L−1 and the precision was below 2.3% (35.0 μg L−1, n = 9). The analytical curve was linear from 5 to 150 μg L−1, with a correlation coefficient of 0.9993. The developed method was successfully applied to spiked alcohol fuel, and accuracy was assessed through recovery tests, with recovery ranging from 97.50 to 100%.  相似文献   

5.
Potentiometric stripping analysis (PSA) was investigated to assay simultaneously cadmium, lead and thallium present as contaminants in highly saline solutions used in hemodialysis. The saline matrices were sodium, potassium, magnesium and calcium chlorides, sodium acetate, sodium bicarbonate and glucose, which constitute concentrates for hemodialysis. A 1000 μg mL−1 Hg(II) solution was used to prepare the mercury film electrode (MFE) and to carry out the stripping step. After a 30 s accumulation interval the analytes were simultaneously detected in the saline matrices without using masking agents. Determination limits of 80 ng L−1 for cadmium and thallium, and 50 ng L−1 for lead were calculated and a R.S.D. ranging from 0.5 to 2.2% (n = 3) was obtained measuring the analytes directly in commercial hemodialysis saline solutions. Recoveries from spiked samples ranging from 94.6 to 102.0% were obtained. The investigated metals were found in concentrations ranging from 2.7 to 5.7 μg L−1 for cadmium, 27.7 to 75.8 μ L−1 for lead and 9.6 to 18.7 μg L−1 for thallium in commercial hemodialysis solutions. The PSA method showed to be adequate to the quality control of saline concentrates for hemodialysis.  相似文献   

6.
This work exploited a sequential injection lab-on-valve (LOV) system for the determination of cadmium by anodic stripping voltammetry (ASV). A miniaturized electrochemical flow cell (EFC) was fabricated in LOV, in which a nafion coated bismuth film electrode was used as working electrode. The cadmium was electrodeposited on the electrode surface in bismuth solution, and measured with the subsequential stripping scan. Under optimal conditions, the proposed system responded linearly to cadmium concentrations in a range 2.0-100.0 μg L−1. The detection limit of this method was found to be 0.88 μg L−1. By loading a sample volume of 800 μL, a sampling frequency of 22 determinations h−1 was achieved. The repeatability expressed as relative standard derivation (R.S.D.) was 3.65% for 20 μg L−1 cadmium (n = 11). The established method was applied to analysis of trace cadmium in environmental water samples and the spiked recoveries were satisfactory.  相似文献   

7.
An on-line solid phase extraction (SPE) preconcentration system coupled to flame atomic absorption spectrometer (FAAS) was developed for determination of copper and cadmium at μg L−1 level. The method is based on the on-line retention of copper and cadmium on a microcolumn of alumina modified with sodium dodecyl sulfate (SDS) and 1,10-phenanthroline and subsequent elution with ethanol and determination by FAAS. The effect of chemical and flow variables that could affect the performance of the system was investigated. The relative standard deviation (n = 6) at 20 μg L−1 level for copper and cadmium were 1.4 and 2.2% and the corresponding limits of detection (based on 3σ) were 0.04 and 0.14 μg L−1, respectively. The method was successfully applied to determination of copper and cadmium in human hair and water samples.  相似文献   

8.
A novel binding phase was developed for use in diffusive gradients in thin-film (DGT) sampling for Cu(II) by employing methylthymol blue as a chelating and chromogenic agent. Methylthymol blue was adsorbed onto beads of Dowex 1 × 8 resin (200-400 mesh) and the resin beads were then immobilised onto an adhesive disc. Analysis of exposed binding discs by either UV-vis spectrophotometry or computer imaging densitometry provided robust quantification of adsorbed Cu(II) in the 0.2-1 μg cm−2 range, allowing detection at μg L−1 concentrations in the test solution (ca. 17 μg L−1 for a 24 h deployment), and in good agreement with established DGT theory. The method was shown to be a potential replacement for binding phases based on Chelex 100 where a colorimetric response to a specific metal is desired.  相似文献   

9.
In this article, a study of novel screen-printed electrodes bulk-modified with five potential bismuth precursor compounds (bismuth citrate, bismuth titanate, bismuth oxide, bismuth aluminate and bismuth zirconate) is presented for the determination of Cd(II) and Pb(II) by anodic stripping voltammetry. During the electrolytic deposition step, the precursor was reduced and served as the source of bismuth. Different key parameters were investigated in detail such as the nature of the bismuth precursor compound, the precursor content in the carbon ink, the polarisation range of the sensors, the supporting electrolyte, the stripping waveform, the deposition time, the deposition potential and the long-term stability of the sensors under continuous use. Using bismuth citrate as the precursor, the limit of detection was 0.9 μg L−1 for Pb(II) and 1.1 μg L−1 for Cd(II). The reproducibility on the same sensor (expressed as % relative standard deviation, (n = 8)) was 5.4% for Pb(II) and 7.2% for Cd(II) at the 20 μg L−1 level. Finally, the sensors were applied to the determination of Cd(II) and Pb(II) in water samples.  相似文献   

10.
A hollow fiber renewal liquid membrane (HFRLM) extraction method to determine cadmium (II) in water samples using Flame Atomic Absorption Spectrometry (FAAS) was developed. Ammonium O,O-diethyl dithiophosphate (DDTP) was used to complex cadmium (II) in an acid medium to obtain a neutral hydrophobic complex (ML2). The organic solvent introduced to the sample extracts this complex from the aqueous solution and carries it over the poly(dimethylsiloxane) (PDMS) membrane, that had their walls previously filled with the same organic solvent. The organic solvent is solubilized inside the PDMS membrane, leading to a homogeneous phase. The complex strips the lumen of the membrane where, at higher pH, the complex Cd-DDTP is broken down and cadmium (II) is released into the stripping phase. EDTA was used to complex the cadmium (II), helping to trap the analyte in the stripping phase. A multivariate procedure was used to optimize the studied variables. The optimized variables were: sample (donor phase) pH 3.25, DDTP concentration 0.05% (m/v), stripping (acceptor phase) pH 8.75, EDTA concentration 1.5 × 10−2 mol L−1, extraction temperature 40 °C, extraction time 40 min, a solvent mixture N-butyl acetate and hexane (60/40%, v/v) with a volume of 100 μL, and addition of ammonium sulfate to saturate the sample. The sample volume used was 20 mL and the stripping volume was 165 μL. The analyte enrichment factor was 120, limit of detection (LOD) 1.3 μg L−1, relative standard deviation (RSD) 5.5% and the working linear range 2-30 μg L−1.  相似文献   

11.
Correia PR  Oliveira PV 《Talanta》2005,67(1):46-53
The effectiveness of internal standardization for simultaneous atomic absorption spectrometry (SIMAAS) was investigated for As and Se determination in urine. Co and Sn were selected as internal standard (IS) candidates based on the evaluation of some physico-chemical parameters related to the atomization. Correlation graphs, plotted from the normalized absorbance signals (n = 20) of internal standard (axis y) versus analyte (axis x), precision, and accuracy of the analytical results were the supportive parameters to choose Co as the most appropriate IS. The urine samples were diluted 1 + 2 to 1.0% (v/v) HNO3 + 80 μg L−1 Co2+. The mixture 20 μg Pd + 3 μg Mg was used as chemical modifier and the optimized temperatures for pyrolysis and atomization steps were 1400 and 2300 °C, respectively. The characteristic masses for As (47 ± 1 pg) and Se (72 ± 2 pg) were estimated from the analytical curves. The detection limits (n = 20, 3δ) were 1.8 ± 0.1 and 2.6 ± 0.1 μg L−1 for As and Se, respectively. The reliability of the entire procedure was checked with the analysis of certified reference material from Sero AS(Seronorm™ Trace Elements in Urine). The obtained results showed the matrix interference disallowed the instrument calibration with aqueous standards. The best analytical condition was achieved when matrix-matched standards were used in combination with Co as IS, which improved the recoveries obtained for As. Under this experimental condition, eight urine samples were analysed and spiked with 10 and 25 μg L−1 As and Se. The mean recoveries were 96 ± 6% (10 μg L−1 As), 95 ± 6% (25 μg L−1 As), 101 ± 7% (10 μg L−1 Se), and 97 ± 4% (25 μg L−1 Se).  相似文献   

12.
In this study a method for the determination of cadmium in fuel alcohol using solid-phase extraction with a flow injection analysis system and detection by flame atomic absorption spectrometry was developed. The sorbent material used was a vermicompost commonly used as a garden fertilizer. The chemical and flow variables of the on-line preconcentration system were optimized by means of a full factorial design. The selected factors were: sorbent mass, sample pH, buffer concentration and sample flow rate. The optimum extraction conditions were obtained using sample pH in the range of 7.3-8.3 buffered with tris(hydroxymethyl)aminomethane at 50 mmol L−1, a sample flow rate of 4.5 mL min−1 and 160 mg of sorbent mass. With the optimized conditions, the preconcentration factor, limit of detection and sample throughput were estimated as 32 (for preconcentration of 10 mL sample), 1.7 μg L−1 and 20 samples per hour, respectively. The analytical curve was linear from 5 up to at least 50 μg L−1, with a correlation coefficient of 0.998 and a relative standard deviation of 2.4% (35 μg L−1, n = 7). The developed method was successfully applied to spiked fuel alcohol, and accuracy was assessed through recovery tests, with recovery ranging from 94% to 100%.  相似文献   

13.
Chelex-100, Dowex 50W-x8 and Dowex MAC-3 exchange resins were investigated for separation and pre-concentration of trace amounts of Cd, Cr, Cu, Fe, Mn, Pb, Ti and Zn in alcohols with respect to retention and desorption characteristics. Dowex 50W-x8 was found to be the best sorbent with percentages recoveries >95%. In addition, Chelex-100 appeared to be suitable for the pre-concentration of Cu, Fe and Zn, whereas Dowex MAC-3 was selective for Cu and Fe. Therefore, Dowex 50W-x8 was used for further investigations. The relative standard deviations <4% (n = 20), limits of detection and quantification were 0.1–1.2 μg L−1 and 0.3–1.5 μg L−1, respectively. The SPE method was validated against a certified reference material and the results were in agreement with certified values. The accuracy of the optimized method was verified by the recovery test in the spiked alcohol samples. The accuracy and spike recovery test for different metal ions were in the range 98–102% and 95–105%, respectively. The optimized method was applied to the separation and pre-concentration of metal ions in different commercial alcohol samples.  相似文献   

14.
A novel nanocomposite was obtained through the controlled surface modification of graphene nanosheets (nanographene) with Nafion by ultrasonic oscillation. The composite was used as an ultrasensitive platform for the detection of cadmium ions (Cd2+) by differential pulse anodic stripping voltammetry (DPASV) analysis. The performance of the nanographene-based sensor was systematically compared with that of a multiwall carbon nanotube (MWCNT)-modified sensor. The results indicate that the nanographene-based sensor exhibits significant advantages over the MWCNT-based sensor in terms of repeatability, sensitivity and limit of detection (LOD). The nanographene-based sensor displayed superior analytical performance over a linear range of Cd2+ concentrations from 0.25 μg L−1 to 5 μg L−1, with a LOD of 3.5 ng L−1. This sensor was also used to systematically screen for 6 types of chemicals, including sodium salts, magnesium salts and zinc salts. It was observed that the sensor could successfully differentiate cadmium ions from interferents (magnesium salts, zinc salts, etc.). The nanographene-based sensor was also demonstrated to be a promising and reliable tool for the rapid detection of cadmium existing in tap water and for the rapid on-site analysis of critical pollution levels of cadmium.  相似文献   

15.
Li D  Jia J  Wang J 《Talanta》2010,83(2):332-336
A bismuth-film modified graphite nanofibers-Nafion glassy carbon electrode (BiF/GNFs-NA/GCE) was constructed for the simultaneous determination of trace Cd(II) and Pb(II). The electrochemical properties and applications of the modified electrode were studied. Operational parameters such as deposition potential, deposition time, and bismuth ion concentration were optimized for the purpose of determination of trace metal ions in 0.10 M acetate buffer solution (pH 4.5). Under optimal conditions, based on three times the standard deviation of the baseline, the limits of detection were 0.09 μg L−1 for Cd(II) and 0.02 μg L−1 for Pb(II) with a 10 min preconcentration. In addition, the BiF/GNFs-NA/GCE displayed good reproducibility and selectivity, making it suitable for the simultaneous determination of Cd(II) and Pb(II) in real sample such as river water and human blood samples.  相似文献   

16.
In this article, we report a new method that involves headspace single-drop microextraction and ion chromatography for the preconcentration and determination of fluoride. The method lies in the in situ hydrogen fluoride generation and subsequent sequestration into an alkaline microdrop (15 μL) exposed to the headspace above the stirred aqueous sample. The NaF formed in the drop was then determined by ion chromatography. The influences of some crucial single-drop microextraction parameters such as the extraction temperature, extraction time, sample stirring speed, sulphuric acid concentration and ionic strength of the sample, on extraction efficiency were investigated. In the optimal condition, an enrichment factor of 97 was achieved in 15 min. The calibration working range was from 10 μg L−1 to 2000 μg L−1 (R2 = 0.998), and the limit of detection (signal to noise ratio of 3) was 3.8 μg L−1 of fluoride. Finally, the proposed method was successfully applied to the determination of fluoride in different milk samples. The recoveries of fluoride (at spiked concentrations of 200 μg L−1 and 600 μg L−1 into milk) in real samples ranged from 96.9% to 107.7%. Intra-day precision (N = 3) in terms of peak area, expressed as relative standard deviation, was found to be within the range of 0.24-1.02%.  相似文献   

17.
A new cadmium(II)-imprinted polymer based on cadmium(II) 2,2′-{ethane-1,2-diylbis[nitrilo(E)methylylidene]} diphenolate-4-vinylpyridine complex was obtained via suspension polymerization. The beads were used as a minicolumn packing for flow-injection-flame atomic absorption spectrometry (FI-FAAS) determination of cadmium(II) in water samples. Sorption effectiveness was optimal within pH range of 6.6-7.7. Nitric acid, 0.5% (v/v) was used as eluent. Fast cadmium(II) sorption by the proposed material enabled to apply sample flow rates up to 10 mL min−1 without loss in sorption effectiveness. Enrichment factor (EF), concentration efficiency (CE) and limit of detection (LOD, 3σ) found for 120-s sorption time were 117, 39.1 min−1 and 0.11 μg L−1, respectively. Sorbent stability was proved for at least 100 preconcentration cycles (RSD = 2.9%). When compared to non-imprinted polymer the new Cd(II)-imprinted polymer exhibited improved selectivity towards cadmium(II) against other heavy metal ions, especially Cu(II) and Pb(II), as well as light metal ions. Accuracy of the method was tested for ground water and waste water certified reference materials and fortified water. The method was applied to Cd(II) determination in natural water samples.  相似文献   

18.
A fast, economic and sensitive chemiluminescence (CL) method has been developed for the analysis of cetrizine hydrochloride (CET) in pharmaceutical formulations and in biological fluids. The CL method is based on the oxidation of tris(2,2′-bipyridyl)ruthenium(II) (Ru (bipy)32+) by peroxydisulphate in a two-chip device. Up to 180 samples can be analysed per hour, consuming only minute quantities of reagents. Three instrumental setups were tested to find the most economical, sensitive and high throughput setup. In the first setup, a continuous flow of sample and CL reagents was used, whereas in the second setup, a fixed volume (2 μL) of (Ru (bipy)32+) was introduced into a continuous infusion of peroxydisulphate and the sample. In the third design, a fixed volume of sample (2 μL) was injected while the CL reagents were continuously infused. Compared to the first setup, a 200% signal enhancement was observed in the third setup. Various parameters that influence the CL signal intensity, including pH, flow rates and reagent concentrations, were optimized. A linear response was observed over the range of 50 μg L−1 to 6400 μg L−1 (R2 = 0.9959) with RSD values of 1.1% (n = 15) for 1000 μg L−1. The detection limit was found to be 15 μg L−1 (S/N = 3). The amount of consumed sample was only 2 μL, from which the detected amount of CET was found to be 6.5 × 10−14 mol. This procedure was successfully applied to the analysis of CET in pharmaceutical formulations and biological fluids.  相似文献   

19.
An automated system to perform liquid-liquid extraction is proposed, in which the effective mixture (the intimate contact) between the aqueous phase and the organic phase, as well as the separation of the phases, are carried out in a micro-batch glass extraction chamber. Sample, reagents and organic solvent are introduced into the glass extraction chamber by a peristaltic pump using air as carrier. The detection of the extracted species from the aqueous phase is made in a small volume (120-150 μl) of isobutyl methyl ketone (MIBK). The system allows enrichment factors of 2-10-fold. The proposed automatic system was evaluated for Cu(II) extraction based on complex formation between copper(II) and 1-(2′-pyridylazo)naphthol (PAN) in MIBK. When a volumetric ration of 2:1 (aqueous:organic) was implemented, copper was detected in the concentration range of 100-1600 μg l−1 (r = 0.9995) with a relative standard deviation of 2% (200 μg l−1, n = 5) and a detection limit of 20 μg l−1. The analytical curve was linear over the concentration range 25-500 μg l−1 (r = 0.9994) when a volumetric ratio of 10:1 was employed. With this ratio, the detection limit was 5.0 μg l−1 and the relative standard deviation was 6% (50 μg l−1, n = 5).  相似文献   

20.
Determination of Se(IV) and Se(VI) in high saline media was investigated by cathodic stripping voltammetry (CSV). The voltammetric method was applied to assay selenium in seawater, hydrothermal and hemodialysis fluids. The influence of ionic strength on selenium determination is discussed. The CSV method was based on the co-electrodeposition of Se(IV) with Cu(II) ions and Se(VI) determined by difference after sample UV-irradiation for photolytic selenium reduction. UV-irradiation was also used as sample pre-treatment for organic matter decomposition. Detection limit of 0.030 μg L−1 (240 s deposition time) and relative standard deviation (RSD) of 6.19% (n = 5) for 5.0 μg L−1 of Se(IV) were calculated. Linear calibration range for selenium was observed from 1.0 to 100.0 μg L−1. Concerning the pre-treatment step, best results were obtained by using 60 min UV-irradiation interval in H2O2/HCl medium. Se(VI) was reduced to the Se(IV) electroactive species with recoveries between 91.7% and 112.9%. Interferents were also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号