首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, a novel La(III) membrane sensor based on 8-amino-N-(2-hydroxybenzylidene)naphthylamine (AIP) is presented. This electrode reveals good selectivity for La3+ over a wide variety of lanthanides metal ions. Theoretical calculations and conductance study of AIP to lanthanum and some other metal ions were carried out and confirmed selectivity toward La(III) ions. The electrode comprises 7% AIP, 30% PVC, 61% NPOE and 2% KTpClPB. The sensor displays a linear dynamic range between 1.0 × 10−7 and 1.0 × 10−1 M, with a nice Nernstian slope of 20.3 ± 0.3 mV per decade and a detection limit of 8.0 × 10−8 M. The potentiometric response is independent of pH in the range of 4.0-9.0. The proposed sensor posses the advantage of short response time, and especially, very good selectivity towards a large number of cations, such as Sm(III), Ce(III, Pr(III), Yb(III) and Hg(II), low detection limit and wide linear dynamic range in comparison with former ones. The electrode can be used for at least seven weeks without any considerable divergence in the potentials. It was used as an indicator electrode in the potentiometric titration of La(III) ions with EDTA. The sensor was applied to the determination of La(III) ions concentration in binary mixtures. It was also applied for the determination of fluoride ions in mouth wash preparations.  相似文献   

2.
Mittal SK  Kumar SK  Sharma HK 《Talanta》2004,62(4):801-805
A new ion-selective electrode (ISE) based on dicyclohexano-18-crown-6 (DC18C6) as a neutral carrier is developed for lanthanum(III) ions. The electrode comprises of dicyclohexano-18-crown-6 (6%), PVC (33%), and ortho-nitrophenyl octyl ether (o-NPOE) (61%). The electrode shows a linear dynamic response in the concentration range of 10−6 to 10−1 M with a Nernstian slope of 19 mV per decade and a detection limit as 5×10−7 M. It has a response time of <30 s and can be used for at least 5 months without any significant divergence in potentials. The selectivity coefficients for mono-, di-, and trivalent cations indicate good selectivity for La(III) ions over a large number of interfering cations. The sensor has been used as an indicator electrode in the potentiometric titrations of La(III) with EDTA. The membrane is successfully applied in partially non-aqueous medium. It can be used in the pH range 4-9.  相似文献   

3.
Solution studies on the binding properties of N-2,4-dimethylphenyl-N′-ethylformamidine (amitraz) toward nine lanthanide ions including lanthanum, cerium, neodium, samarium, europium, gadolinium, terbium, dysprosium, ytterbium and some other transition and heavy metal ions such as copper, lead, cobalt, nickel ions, showed a selective 1:1 complexation between amitraz and lanthanum ions. Consequently, amitraz was applied as an ion carrier in construction of a novel poly(vinyl chloride) membrane sensor for La(III). The sensor has a linear dynamic range of 1.0 × 10−1 to 1.0 × 10−7 M with a Nernstian slope of 19.8 ± 0.2 mV per decade and a detection limit of 8.0 × 10−8 M. The proposed sensor displays a fast response time (<8 s), and can be used for at least 2 months without any considerable divergences in the potentials. The La(III) membrane sensor revealed comparatively good selectivity with respect to most of cations including alkaline, alkaline earth, and some transition and heavy metal ions. It could be used in a pH range of 3.0-9.0. The proposed membrane electrode was used as an indicator electrode in the potentiometric titration of La(III) ions with an EDTA solution, and also in the determination of fluoride concentration in some mouth wash preparations.  相似文献   

4.
A polyvinyl chloride (PVC) based membrane sensor for cerium ions was prepared by employing N,N′-bis[2-(salicylideneamino)ethyl]ethane-1,2-diamine as an ionophore, oleic acid (OA) as anion excluder and o-nitrophenyloctyl ether (o-NPOE) as plasticizer. The plasticized membrane sensor exhibits a Nernstian response for Ce(III) ions over a wide concentration range (1.41 × 10−7 to 1.0 × 10−2 M) with a limit of detection as low as 8.91 × 10−8 M. It has a fast response time (<10 s) and can be used for 4 months. The sensor revealed a very good selectivity with respect to common alkali, alkaline earth and heavy metal ions. The response of the proposed sensor is independent of pH between 3.0 and 8.0. It was used as an indicator electrode in potentiometric titration of fluoride, carbonate and oxalate anions and determination of cerium in simulated mixtures.  相似文献   

5.
A novel optical sensor has been proposed for sensitive determination of thorium (IV) ion in aqueous solutions. The thorium sensing membrane was prepared by incorporating 4-(p-nitrophenyl azo)-pyrocatechol (NAP) as ionophore in the plasticized PVC membrane containing tributyl phosphate (TBP) as plasticizer. The membrane responds to thorium ion by changing color reversibly from yellow to red-brown in glycine buffer solution at pH 3.5. The proposed sensor displays a linear range of 8.66 × 10−6-2.00 × 10−4 M with a limit of detection of 6 × 10−6 M. The response time of the optode was about 8.8-12.5 min, depending on the concentration of Th (IV) ions. The selectivity of optode to Th (IV) ions in glycine buffer is good. The sensor can readily be regenerated by exposure to a solution mixture of sodium fluoride and 5-sulfosalicylic acid (dihydrate) (0.01 M each). The optode is fully reversible. The proposed optode was applied to the determination of thorium (IV) in environmental water samples.  相似文献   

6.
A novel selective membrane electrode for determination of ultra-trace amount of lead was prepared. The PVC membrane containing N,N′-dimethylcyanodiaza-18-cown-6 (DMCDA18C6) directly coated on a graphite electrode, exhibits a Nernstian response for Pb2+ ions over a very wide concentration range (from 1.0×10−2 to 1.0×10−7 M) with a limit of detection of 7.0×10−8 M (∼14.5 ppb). It has a fast response time of ∼10 s and can be used for at least 2 months without any major deviation in potential. The electrode revealed very good selectivity with respect to all common alkali, alkaline earth, transition and heavy metal ions. The proposed sensor was used as an indicator electrode in potentiometric titration of lead ions and in determination of lead in edible oil, human hair and water samples. The proposed sensor was found to be superior to the best Pb2+-selective electrodes reported in terms of detection limit and selectivity coefficient.  相似文献   

7.
A novel coated wire electrode (CWE) for Al(III) ions is described based on 2-(1H-benzo[d]imidazole-1-yl)-1-phenylethanoneoxime as a new ionophore in carbon-PVC composite. The sensor exhibits significantly enhanced selectivity toward Al3+ ions over the concentration range 4.3 × 10−7 to 5.0 × 10−2 M with a lower detection limit of 2.5 × 10−7 M and a Nernstian slope of 19.41 ± 0.52 mV decade−1 of aluminium activity. This sensor has a short response time of about 10 s and is reproducible and stable for at least forty-five days. This proposed CWE which is designed for the first time revealed good selectivity for Al(III) over a wide variety of other cations. The performance of the sensor is best in the pH range of 3.1-5.5 and it also works well in partially non-aqueous medium. Moreover, the assembly has been successfully used as an indicator electrode in the potentiometric titration of aluminium (III) against EDTA and also in determining Al(III) quantitatively in pharmaceutical and mineral water samples.  相似文献   

8.
A highly selective membrane electrode based on nickel(II)-1,4,8,11,15,18,22,25-octabutoxyphthalocyanine (NOBP) is presented. The proposed electrode shows very good selectivity for thiocyanate ions over a wide variety of common inorganic and organic anions. The sensor displays a near Nernstian slope of −58.7 ± 0.6 mV per decade. The working concentration range of the electrode is 1.0 × 10−6 to −1.0 × 10−1 M with a detection limit of 5.7 × 10−7 M (33.06 ng/mL). The response time of the sensor in whole concentration ranges is very short (<10 s). The response of the sensor is independent on the pH range of 4.3-9.8. The best performance was obtained with a membrane composition of 30% PVC, 65% dibutyl phthalate, 3% NOBP and 2% hexadecyltrimethylammonium bromide. It was successfully applied to direct determination of thiocyanate in biological samples, and as an indicator electrode for titration of thiocyanate ions with AgNO3 solution.  相似文献   

9.
The feasibility of a newly synthesized Rh(III) complex, Rh[(trpy)(bpy)Cl](PF6)2, as a novel ionophore for the preparation of anion-selective polymeric membrane electrodes was tested. The ionophore exhibited anti-Hofmeister behavior with enhanced potentiometric selectivity toward thiocyanate ion compared to other anions. The influence of some experimental parameters such as membrane composition, nature and amount of plasticizer and additive and concentration of internal solution on the potential response of the SCN sensor were investigated. The electrode exhibits a Nernstian response for SCN over a wide concentration range (1.0 × 10−5 to 1.0 × 10−1 M) with a slope −58.7 ± 0.5 mV per decade and a detection limit of 4.0 × 10−6 M (0.23 ppm). It could be used in a pH range of 3.0-8.0 and has a fast response time of about 15 s. The proposed sensor was used for the determination of thiocyanate ions in real samples such as urine and saliva of smokers and nonsmokers and, as an indicator electrode, in potentiometric titrations of SCN ion.  相似文献   

10.
A new chelating resin, Aurin tricarboxylic acid modified silica, was synthesized. The resin behaves as a selective chelating ion exchanger for Cr(III) at a pH 3.8-5.5. A polyvinyl chloride-based membrane electrode of the modified silica has been fabricated and explored as sensor for Cr(III) ions. The membrane works well over the concentration range 7.0 × 10−6 to 1 × 10−1 M of Cr(III) with a Nernstian slope of 19.0 mV per decade of concentration. The response time of the sensor is 10 s and it can be used for a period of 5 months. The performance of the sensor is best in the pH range 3.5-6.5 and it also works well in partially non-aqueous medium. The selectivity coefficient values depicts that the membrane exhibits good selectivity over a number of interfering ions. Moreover, the membrane sensor has been applied to analyse the concentration of chromium in certified steel sample and food materials with greater than 97% accuracy.  相似文献   

11.
A novel PVC-based membrane sensor based on vanadyl salophen (VNSP) for determination of trace amounts of monohydrogenphosphate (MHP) ions is introduced. The electrode revealed Nernstian response towards monohydrogenphosphate over the wide concentration range from 1.0×10−1 to 1.0×10−6 M at the pH of 8.2. The effect of solvent mediator, cationic additives and amount of ion-carrier on the behavior of the sensor was investigated. The sensor shows a short response time (<20 s) in the whole concentration ranges. The selectivity of the electrode is very high, and it can be used for detection of trace amounts of monohydrogenphosphate in the presence of large amounts of other anions. The detection limit of the electrode was 5.0×10−7 M (48 ng/ml) and it could be used for 14 weeks without any measurable changes in the slope. The potentiometric selectivity coefficients data revealed negligible interference from 16 common anions. It was successfully applied for the direct determination of monohydrogenphosphate in fertilizer samples and, as an indicator electrode, in potentiometric titration of HPO42− ion with barium nitrate.  相似文献   

12.
The suitability of a xanthone derivative, 1-hydroxy-3-methyl-9H-xanthen-9-one (HMX) as a neutral ionophore for the preparation of a polyvinylchloride (PVC) membrane electrode for aluminum(III) ions was investigated. The prepared electrode exhibits a Nernstian response for Al3+ ions over a wide concentration range (1.0 × 10−6 to 1.6 × 10−1 M) with a limit of detection 6.0 × 10−7 M. It has a relatively fast response time and can be used for at least three months without any considerable divergence in potentials. The proposed membrane electrode revealed very good selectivity for Al3+ ions over a wide variety of other cations and could be used at a working pH range of 3.0-8.5. It was used as an indicator electrode in potentiometric titration of aluminum ions with EDTA and in the determination of Al3+ in different real samples.  相似文献   

13.
A novel fluorescent chemical sensor for the highly sensitive and selective determination of Fe3+ ions in aqueous solutions is prepared. The iron sensing system was prepared by incorporating 5-(8-hydroxy-2-quinolinylmethyl)-2,8-dithia-5-aza-2,6-pyridinophane (L) as a neutral Fe3+-selective fluoroionophore in the plasticized PVC membrane containing sodium tetraphenylborate as a liphophilic anionic additive. The response of the sensor is based on the strong fluorescence quenching of L by Fe3+ ions. At pH 5.5, the proposed sensor displays a calibration curve over a wide concentration range from 6.0 × 10−4 to 1.0 × 10−7 M, with a relatively fast response time of less than 2 min. In addition to a high stability and reproducibility, the sensor shows a unique selectivity toward Fe3+ ion with respect to common coexisting cations. The proposed fluorescence optode was applied to the determination of iron(III) content of straw of rice, spinach and different water samples. The fluorescent sensor was also used as a novel probe for Fe3+/Fe2+ speciation in aqueous solution.  相似文献   

14.
Preparation and application of gold 2-mercaptosuccinic acid self-assembled monolayer (Au-MSA SAM) electrode for determination of iron(III) in the presence of iron(II) is described by cyclic voltammetry, electrochemical impedance spectroscopy, and Osteryoung square wave voltammetry. The square wave voltammograms showed a sharp peak around positive potentials +0.250 V that was used for construction of the calibration curve. Parameters influencing the method were optimized. A linear range calibration curve from 1.0 × 10−10 to 6.0 × 10−9 M iron(III) with a detection limit of 3.0 × 10−11 M and relative standard deviation (R.S.D.) of 6.5% for n = 8 at 1.0 × 10−9 M iron(III) was observed in the best conditions. Possible interferences from the coexisting ions were also investigated. The results demonstrated that sensor could be used for determination of iron(III) in the presence of various ions. The validity of the method and applicability of the sensor were successfully tested by determining of iron(III) in natural waters (tap and mineral waters) and in a pharmaceutical sample (Venofer® ampoule) without interference from sample matrix. The experimental data are presented and discussed from which the new sensor is characterized.  相似文献   

15.
A highly selective poly(vinyl chloride) (PVC) membrane electrode based on 1,8-dibenzyl-1,3,6,8,10,13-hexaazacyclotetradecane-Ni(II) as a membrane carrier with unique selectivity toward thiocyanate is reported. The influence of membrane composition, pH and foreign anions were investigated. The sensor exhibits a Nernstian response for thiocyanate over a wide concentration range of 3.3×10−6 to 0.10 M, with a slope 58.4±0.3 mV per decade. The limit of detection is 3.0×10−6 M SCN. The sensor has a response time of <20 s and can be used for at least 2 months without any considerable divergence in potential. The proposed electrode shows fairly a good discriminating ability towards SCN ion in comparison to other anions. It was successfully applied to direct determination of thiocyanate in urine and saliva and it was also used as an indicator electrode in titration of thiocyanate with Ag+ ions.  相似文献   

16.
A new carbon paste electrode modified with tetramethyl thiuram disulfide is prepared to use as copper potentiometric sensor in batch and flow analysis. The influence of pH and carbon paste composition on the potentiometric response is studied. The principal parameters of the flow system are optimized and the detection limits and the selectivity coefficients of the potentiometric sensor are calculated for static and flow mode. In both cases, the sensor shows high selectivity to copper ions but in flow analysis this selectivity is higher. The obtained detection limits are 4.6 × 10−8 M for batch measurements and 2.0 × 10−7 M for on-line analysis. The potentiometric sensor is applied to copper(II) determination in real samples in static and flow measurements. In both analysis modes, successful results are obtained.  相似文献   

17.
In this study, a new poly(vinyl chloride) (PVC) membrane sensor for La3+ ion based on 2,2′-dithiodipyridine as an ion carrier was prepared. This electrode revealed good selectivity for La3+ over a wide variety of other metal ions. Effects of experimental parameters such as membrane composition, nature and amount of plasticizer, the amount of additive and concentration of internal solution on the potential response of La3+ sensor were investigated. The electrode exhibited a Nernstian slope of 20.0 ± 1.0 mV per decade of La3+ over a concentration range of 7.1 × 10−6 to 2.2 × 10−2 M of La3+ in the pH range 3.3-8.0. The response time was about 7 s and the detection limit was 3.1 × 10−6 M. The electrode can be used for at least 2 months without a considerable divergence in potential. The proposed electrode was used as an indicator electrode in potentiometric titration of oxalate and fluoride ions and was applied for determination of F ion in mouthwash solution.  相似文献   

18.
A simple fluorescent sensor 1 has been developed for the determination of Fe(III) in 100% aqueous solution at pH 7.0. The sensor comprises a novel aminobisulfonate receptor joined to a naphthalene fluorophore via a methylene spacer in the fluorophore-spacer-receptor format of photoinduced electron transfer (PET) based sensors. The fluorescence emission of the sensor was quenched upon addition of Fe(III) ions, most likely due to electron/energy transfer between Fe(III) and the excited naphthalene. The sensor displayed good selectivity for Fe(III) over other physiologically relevant metal ions and can estimate Fe(III) concentration between 16 and 63 μM. Stern Volmer analysis showed the binding stoichiometry to be 1:1 (host-guest) with a binding constant, calculated using the Benesi-Hilderbrand equation, of (7.6 ± 0.6) × 104 M−1.  相似文献   

19.
The carbazole derivative, 9-ethyl-3-carbazylidene carbazole hydrazone (ECCH) with two conjugated carbazole rings have been applied as a fluorescence carrier for preparation of an iodine sensitive optical chemical sensor. The response of the sensor is based on quenching of the fluorescence of ECCH by iodine. The conjugated carbazole dimer based sensor shows a linear response toward iodine in the concentration range 1.0 × 10−6 to 1.0 × 10−4 mol L−1, with a detection limit of 8.0 × 10−7 mol L−1 at pH of 7.0. The effect of composition of the sensor membrane was studied, and the experimental conditions were optimized. Most commonly coexisting ions do not interfer with the iodine assay. The sensor shows sufficient repeatability, selectivity, operational lifetime of two months and a fast response of less then 50 s. The sensor has been used for determination of iodine in water samples.  相似文献   

20.
Vinod K. Gupta  Manoj K. Pal 《Talanta》2010,82(4):1136-1142
A new terbium selective sensor based on N-(2-hydroxyphenyl)-3-(2-hydroxyphenylhydroxyphenylimino)-N-phenylbutanamidine (L1) and N,N′-bis((1H-indole-3-yl)methylene)butane-1,4 diamine (L2) as a ionophore is reported. Effect of various plasticizers; 2-nitrophenyloctylether (o-NPOE), dibutyl butylphosphonate (DBBP), chloronaphthelene (CN), dioctylphthalate (DOP) and tri-(2-ethylhexyl)phosphate (TEHP) with anion excluder, potassium tetrakis (p-chloropheny1)borate (KTpClPB) have been studied. The membrane with a composition of ionophore (L1):KTpClPB:PVC:o-NPOE (w/w, %) in ratio of 3.0:5.0:30.0:62.0 exhibited enhanced selectivity towards terbium ions (III) in the concentration range of 3.5 × 10−7 to 1.0 × 10−2 M with a detection limit of 1.2 × 10−7 M and a Nernstian slope (20.0 ± 0.5 mV dec−1 activity). The sensors showed the working pH range to be 3.5-7.5 with response time of 11 s. The sensor has been found to work satisfactorily in partially non-aqueous media up to 15% (v/v) content of methanol, ethanol or acetonitrile and could be used for a period of 3 months. The selectivity coefficients indicated high selectivity for terbium (III). The fast and stable response, good reproducibility and long-term stability of the sensors were observed. The application of the sensor has been demonstrated in determination of terbium (III) ions in spiked water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号