首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Silver amalgamated electrodes are a good substrate to determine lead (Pb) and cadmium (Cd) in seawater because they have properties similar to mercury but without the free mercury (Hg). Here a silver amalgamated microwire (SAM) electrode is optimised for the determination of Pb and Cd in coastal waters and uncontaminated ocean waters. The SAM was vibrated during the deposition step to increase the sensitivity, and electroanalytical parameters were optimised. The Hg coating required plating from a relatively concentrated (millimolar) solution, much greater (500×) than used for instance to coat glassy carbon electrodes. However, the coating on the ex situ amalgamated electrode was found to be stable and could be used for up to a week to determine trace levels of Pb in seawater of natural pH. The limit of detection square-wave ASV (50 Hz) using the pre-plated SAM electrode was 8 pM Pb using a 1-min plating time at pH 4.5. The limit of detection in pH 2 seawater was 4 pM using a 5-min plating time, and it was 12 pM using a 10-min plating time at natural pH in the presence of air, using a square-wave frequency of 700 Hz. The vibrating SAM electrode was tested on the determination of Pb in reference seawater samples from the open Atlantic (at the 20 pM level), Pacific, and used for a study of Pb in samples collected over 24 h in Liverpool Bay (Irish Sea).  相似文献   

2.
Sensitive and stable monitoring of heavy metals in seawater using screen-printed electrodes (SPE) is presented. The analytical performance of SPE coupled with square wave anodic stripping voltammetry (SWASV) for the simultaneous determination of Pb and Cd in seawater samples, in the low μg L−1 range, is evaluated. The stripping response for the heavy metals following 2 min deposition was linear over the concentration range examined (10-2000 μg L−1) with detection limits of 1.8 and 2.9 μg L−1 for Pb and Cd, respectively. The accuracy of the method was validated by analyzing metal contents in different spiked seawater samples and comparing these results to those obtained with the well-established anodic stripping voltammetry using the hanging mercury drop electrode. Moreover, a certified reference material was also used and the results obtained were satisfactory.  相似文献   

3.
A new method is presented for the determination of bismuth and copper based on cathodic adsorptive stripping of complexes of Cu(II) and Bi(III) with 2′,3,4′,5,7-pentahydroxyflavone (morin) at a hanging mercury drop electrode (HMDE). The effect of various parameters such as pH, concentration of morin, accumulation potential and accumulation time on the selectivity and sensitivity were studied. The optimum conditions for determination of copper include nitric acid concentration 0.1 M, morin concentration 0.6 μM and accumulation potential of −300 mV. Those conditions for the determination of bismuth include 0.15 M acid concentration, 0.6 μM morin and accumulation potential of −300 mV. Under these optimum conditions and for an accumulation time of 60 s, the measured peak current at −20 to 25 mV is proportional to the concentration of copper and bismuth over the range of 0.2-130 and 5-50 ng ml−1, respectively. At high concentration of morin (35 μM morin) and accumulation potential of −300 mV (versus Ag/AgCl reference electrode) the peak current is proportional only to the concentration of copper and bismuth has no contribution to the current. At low concentration of morin (0.5 μM morin) and accumulation potential of 100 mV (versus Ag/AgCl reference electrode) the peak current is proportional only to the concentration of bismuth. The method was applied to the determination of copper and bismuth in some real and synthetic samples with satisfactory results.  相似文献   

4.
A sequential injection lab-on-valve (LOV) unit, integrating a miniaturized electrochemical flow cell (EFC), has been constructed for the determination of trace amounts of Se (IV) by employing cathodic stripping voltammetry (CSV) technique. The procedure is carried out on a mercury film coated glassy carbon electrode. The analyte solution and electrolyte solution were continuously aspirated and merged in the holding coil (HC) by using a single syringe pump, which were afterwards pushed into the EFC, where the peak current was generated during the subsequent deposition/stripping procedure and measured as the basis of quantification. Assay parameters were optimized in order to achieve the best analytical performance, including mercury film preparation, supporting electrolyte composition, deposition potential and deposition time, and flow variables in the LOV. By loading a sample volume of 500 μL, a linear calibration graph was derived within 1-600 μg L−1, and a detection limit (3б) of 0.11 μg L−1 was achieved along with a sampling frequency of 20 h−1. By integrating the EFC into the LOV unit, the assembling system not only minimized the sample/reagent consumption and waste generation, but also enhanced the sampling frequency. The work itself extended the applications of electrochemical detection techniques and provided a good platform for Se (IV) electrochemical analysis.  相似文献   

5.
Wang J  Lu D  Thongngamdee S  Lin Y  Sadik OA 《Talanta》2006,69(4):914-917
Bismuth-coated glassy carbon electrodes have been successfully applied for catalytic adsorptive stripping voltammetric measurements of low levels of vanadium(V) in the presence of chloranilic acid (CAA) and bromate ion. The new protocol is based on the accumulation of the vanadium-chloranilic acid complex from an acetate buffer (pH 5.5) solution at a preplated bismuth film electrode held at −0.35 V (versus Ag/AgCl), followed by a square-wave voltammetric scan. Factors influencing the adsorptive stripping performance, including the CAA and bromate concentrations, solution pH, and accumulation potential or time have been optimized. The response compares favorably with that observed at mercury film electrodes. A linear response is observed over the 5-25 μg/L concentration range (2 min accumulation), along with a detection limit of 0.20 μg/L vanadium (10 min accumulation). High stability is indicated from the reproducible response of a 50 μg/L vanadium solution (n = 25; R.S.D. = 3.1%). Applicability to a groundwater sample is illustrated.  相似文献   

6.
A rapid electrochemical stripping chronopotentiometric procedure to determined sulfide in unaltered hydrothermal seawater samples is presented. Sulfide is deposited at −0.25 V (vs Ag/AgCl, KCl 3 M) at a vibrating gold microwire and then stripped through the application of a reductive constant current (typically −2 μA). The hydrodynamic conditions are modulated by vibration allowing a short deposition step, which is shown here to be necessary to minimize H2S volatilization. The limit of detection (LOD) is 30 nM after a deposition step of 7 s. This LOD is in the same range as the most sensitive cathodic voltammetric technique using a mercury drop electrode and is well below those reported previously for other electrodes capable of being implemented in situ.  相似文献   

7.
We examined the use of a bismuth-glassy carbon (Bi/C) composite electrode for the determination of trace amounts of lead and cadmium. Incorporated bismuth powder in the composite electrode was electrochemically dissolved in 0.1 M acetate buffer (pH 4.5) where nanosized bismuth particles were deposited on the glassy carbon at the reduction potential. The anodic stripping voltammetry on the Bi/C composite electrode exhibited well-defined, sharp and undistorted peaks with a favorable resolution for lead and cadmium. Comparing a non-oxidized Bi/C composite electrode with an in-situ plated bismuth film electrode, the Bi/C composite electrode exhibited superior performance due to its much larger surface area. The limit of detection was 0.41 μg/L for lead and 0.49 μg/L for cadmium. Based on this study, we are able to conclude that various types of composite electrodes for electroanalytical applications can be developed with a prudent combination of electrode materials.  相似文献   

8.
A sensitive and selective method for the simultaneous determination of copper and bismuth by adsorptive stripping was developed using nuclear fast red (2-anthracenesulfonic acid, 4-amino-9,10-dihydro-1,3-dihydroxy-9,10-dioxo-, monosodium salt) as selective complexing agent onto hanging mercury drop electrode. In a single scan both metals gave peaks that were distinctly separated by 85 mV allowing their determination in the presence of each other. Optimal analytical conditions were found to be: nuclear fast red concentration of 80 μM, pH of 2.8 and adsorptive potential of −300 mV versus Ag/AgCl. With accumulation time of 180 s the peaks currents are proportional to concentration of copper and bismuth over the 1-100 and 5-60 ng mL−1 range with detection limits of 0.2 and 1.2 ng mL−1, respectively. The procedure was applied to simultaneous determination of copper and bismuth in some real samples.  相似文献   

9.
The combined effects of pH, thiocyanate ion and deposition potential in the characteristics of thin mercury film electrodes plated on glassy carbon surfaces are evaluated. Charges of deposited mercury are used as an experimental parameter for the estimation of the effectiveness of the mercury deposition procedure. The sensitivity of the anodic stripping voltammetry (ASV) method for the determination of lead at in situ and at ex situ formed thin mercury films are also examined. It was concluded that, in acidic solutions (pH 2.5-5.7) and fairly negative deposition potentials, e.g. −1.3 to −1.5 V, thiocyanate ion promotes the formation of the mercury film, in respect both to the amount of deposited mercury and to the mercury deposition rate. Also, the mercury coatings produced in thiocyanate solutions are more homogeneous, as depicted by microscopic examinations. In the presence of thiocyanate there is no obvious advantage of using high concentrations of mercury and/or high deposition times for the in situ and ex situ preparation of the mercury film electrodes. The optimised thin mercury film electrode ex situ prepared in a 5.0 mM thiocyanate solution of pH 3.4 was successfully applied to the ASV determination of lead and copper in acidified seawater (pH 2). The limit of detection (3σ) was 6×10−11 M for lead and 2×10−10 M for copper for a deposition time of 5 min. Relative standard deviations (R.S.D.s) of <1.2% were obtained for determinations at the nanomolar of concentration level.  相似文献   

10.
A study is presented on the use of the bismuth film electrode (BiFE) operated in the anodic stripping and the cathodic adsorptive stripping voltammetry (ASV, CAdSV) modes, for the determination of two trace heavy metals (Cd and Co, respectively), in soil extract samples. Two types of BiFE were examined in this study: the in situ prepared BiFE, which was employed in ASV determination of Cd, and the ex situ prepared BiFE, which was used in CAdSV of Co with dimethylglyoxime (DMG) as complexing agent. A series of unpretreated soil extracts with varying Cd and Co concentrations were analyzed, and the results obtained compared to those determined using inductively coupled plasma-mass spectrometry (ICP-MS). The results revealed the suitability of stripping analysis at the BiFE for determination of μg l−1 levels of heavy metals in soil extracts. The promising results obtained here, coupled with the non-toxic nature of bismuth (in comparison to commonly used mercury electrodes employed in stripping analysis), offer great promise in centralized and decentralized analysis of trace heavy metals in complex environmental matrices.  相似文献   

11.
Lin L  Lawrence NS  Thongngamdee S  Wang J  Lin Y 《Talanta》2005,65(1):144-148
A sensitive adsorptive stripping voltammetric protocol at a bismuth-coated glassy-carbon electrode for trace measurements of chromium (VI) in the presence of diethylenetriammine pentaacetic acid (DTPA) is described. The new protocol is based on accumulation of the Cr-DTPA complex at a preplated bismuth film electrode held at −0.80 V, followed by a negatively-going square-wave voltammetric waveform. Factors influencing the stripping performance including the film preparation, solution pH, DTPA and nitrate concentrations, deposition potential and deposition time, have been optimized. The resulting performance compares well with that observed for analogous measurements at mercury film electrodes. A preconcentration time of 7 min results in a detection limit of 0.3 nM Cr(VI) and after 2 min a relative standard deviation at 20 nM of 5.1% (n = 25). Applicability to river water samples is demonstrated. The attractive behavior of the new “mercury-free” chromium sensor holds great promise for on-site environmental and industrial monitoring of chromium (VI). Preliminary data in this direction using bismuth-coated screen-printed electrodes are encouraging.  相似文献   

12.
《Electroanalysis》2006,18(2):186-194
The complex of osmium tetroxide with 2,2′‐bipyridine has been utilized as a probe of DNA structure and an electroactive marker of DNA in DNA hybridization sensors. It produces several voltammetric signals, the most negative of them has been observed only at mercury electrodes. This signal is of catalytic nature affording a high sensitivity of DNA determination. The catalytic current due to evolution of hydrogen in voltammetry of DNA modified by complex of osmium tetroxide with 2,2′‐bipyridine (DNA‐Os,bipy) was studied. Solid amalgam electrodes (modified with mercury menisci) of silver (m‐AgSAE), copper (m‐CuSAE), gold, and of combined bismuth and silver, were used as possible substitutes for mercury electrodes. Besides the hanging mercury drop electrode (HMDE), the catalytic current was observed only on m‐AgSAE and m‐CuSAE. Electrodes of gold and bismuth amalgams did not give the catalytic current. The detection limit of DNA‐Os,bipy on HMDE was 0.1 ng mL?1 (RSD=2.3 %, N=11), and on m‐AgSAE 0.2 ng mL?1 (RSD=3.1%, N=11). The m‐AgSAE was successfully applied as a detection electrode in double‐surface DNA hybridization experiments offering highly specific discrimination between complementary (target) and nonspecific DNAs, as well as determination of the length of a repetitive DNA sequence. The m‐AgSAE has proved a convenient alternative to the HMDE or carbon electrodes used for similar purposes in previous work.  相似文献   

13.
A new method is proposed for the determination of bismuth and copper in the presence of each other based on adsorptive stripping voltammetry of complexes of Bi(III)-chromazorul-S and Cu(II)-chromazorul-S at a hanging mercury drop electrode (HMDE). Copper is an interfering element for the determination of Bi(III) because, the voltammograms of Bi(III) and Cu(II) overlapped with each other. Continuous wavelet transform (CWT) was applied to separate the voltammograms. In this regards, wavelet filter, resolution of the peaks and the fitness were optimized to obtain minimum detection limit for the elements. Through continuous wavelet transform Symlet4 (Sym4) wavelet filter at dilation 6, quantitative and qualitative analysis the mixture solutions of bismuth and copper was performed. It was also realized that copper imposes a matrix effect on the determination of Bi(III) and the standard addition method was able to cope with this effect. Bismuth does not have matrix effect on copper determination, therefore, the calibration curve using wavelet coefficients of CWT was used for determination of Cu(II) in the presence of Bi(III). The detection limits were 0.10 and 0.05 ng ml−1 for bismuth and copper, respectively. The linear dynamic range of 0.1-30.0 and 0.1-32.0 ng ml−1 were obtained for determination of bismuth in the presence of 24.0 ng ml−1 of copper and copper in the presence of 24.0 ng ml−1 of bismuth, respectively. The method was used for determination of these two cations in water and human hair samples. The results indicate the ability of method for the determination of these two elements in real samples.  相似文献   

14.
Guo Z  Feng F  Hou Y  Jaffrezic-Renault N 《Talanta》2005,65(4):1052-1055
Bismuth film electrode (BiFE) was shown to be an attractive alternative to common mercury film electrode (MFE) for anodic stripping voltammetric measurements. In this study, bismuth film, that was in situ deposited onto glassy carbon electrode, was used to detect zinc content of milkvetch, used in traditional Chinese medicine. Variables affecting the response have been evaluated and optimized. Experimental results showed a high response, with a good linearity (between 0.5 × 10−6 mol L−1 and 3 × 10−6 mol L−1) a good precision (R.S.D. = 3.58%) and a low detection limit (9.6 × 10−9 mol L−1 with a 120 s anodic). The anodic stripping performance makes the bismuth film electrode very desirable for measurements of trace nutritive element zinc in milkvetch and should impart possible restrictions on the use of mercury electrode.  相似文献   

15.
In the present work the anodic stripping voltammetric (ASV) methodology using a thin mercury film electrode in situ plated in thiocyanate media was re-assessed in order to allow the simultaneous determination of copper and lead in seawater. Under previously suggested conditions [6], i.e. using a concentration of thiocyanate of 5 mM, the ASV peaks of copper and lead overlapped due to the formation of a stable copper(I)-thiocyanate species, limiting the analytical determinations. Therefore, the best value for the thiocyanate concentration was re-evaluated: for 0.05 mM a trade-off between good resolution of the copper and lead peaks and high reproducibility of the mercury film formation/removing processes was achieved. In this media, the ASV peaks for Pb and Cu occurred, separated by 140 mV. Also, the in situ thin mercury film electrode was produced and removed with good repeatability, which was confirmed by the relative standard deviation values for the ASV determinations: 0.5% for Pb and 2.0% for Cu (10 replicate determinations in a solution with metal concentrations 1.5×10−8 M for lead and 2.2×10−8 M for copper). The optimised methodology was successfully applied to the determination of copper in the presence of lead, in certified seawater (NASS-5).  相似文献   

16.
The aim of this work was the synthesis and characterization of new modified sol-gel carbon composite electrodes and their application to the determination of trace mercury species with positive charge. Two types of modified electrodes were synthesized, sol-gel and sol-gel-PVSA carbon composite electrodes. In the last ones, poly(vinylsulfonic acid) (PVSA) was used as a functional polymer entrapped within the sol-gel material due to its cationic exchange properties. In a first stage, parameters affecting both, the sol-gel process and the electrode preparation were optimized. In a second stage, usefulness of developed electrodes applied to the determination of cationic mercury species was evaluated, optimizing the activation, preconcentration, measurement and regeneration steps. Developed electrodes showed very favourable electroanalytical properties for their use as amperometric sensors, such as small size, low cost, simple fabrication and handling, renewability and reusability. By means of an easy and low-cost methodology, satisfactory experimental results were obtained in Hg2+ determination. In this sense, developed analytical methodology showed adequate response times, linear concentration range up to three orders of magnitude (from 5.0 × 10−8 to 5.0 × 10−5 M) and detection limits of 1.5 × 10−8 M (3.0 μg L−1). These results suggest that the incorporation of different receptor molecules at the sol-gel carbon composite material in combination with a selected electrochemical reaction could improve the detection limit achieved and obtain electrochemical sensors adapted to the determination of different species of mercury and other heavy metals.  相似文献   

17.
A new chemically modified carbon paste electrode was constructed and used for rapid, simple, accurate, selective and highly sensitive simultaneous determination of cadmium, copper and mercury using square wave anodic stripping voltammetry (SWASV). The carbon paste electrode was modified by N,N′-bis(3-(2-thenylidenimino)propyl)piperazine coated silica nanoparticles. Compared with carbon paste electrode, the stripping peak currents had a significant increase at the modified electrode. Under the optimized conditions (deposition potential, −1.100 V vs. Ag/AgCl; deposition time, 60 s; resting time, 10 s; SW frequency, 25 Hz; pulse amplitude, 0.15 V; dc voltage step height, 4.4 mV), the detection limit was 0.3, 0.1 and 0.05 ng mL−1 for the determination of Cd2+, Cu2+ and Hg2+, respectively. The complexation reaction of the ligand with several metal cations in methanol was studied and the stability constants of the complexes were obtained. The effects of different cations and anions on the simultaneous determination of metal ions were studied and it was found that the electrode is highly selective for the simultaneous determination of Cd2+, Cu2+ and Hg2+. Furthermore, the present method was applied to the determination of Cd2+, Cu2+ and Hg2+ in water and some foodstuff samples.  相似文献   

18.
Hexacyanoferrate(III) was used as a mediator in the determination of total iron, as iron(II)-1,10-phenanthroline, at a screen-printed carbon sensor device. Pre-reduction of iron(III) at −0.2 V versus Ag/AgCl (1 M KCl) in the presence of hexacyanoferrate(II) and 1,10-phenanthroline (pH 3.5-4.5), to iron(II)-1,10-phenanthroline, was complete at the unmodified carbon electrode surface. Total iron was then determined voltammetrically by oxidation of the iron(II)-1,10-phenanthroline at +0.82 V, with a detection limit of 10 μg l−1.In potable waters, iron is present in hydrolysed form, and it was found necessary to change the pH to 2.5-2.7 in order to reduce the iron(III) within 30 s. A voltammetric response was not found at lower pH values owing to the non-formation of the iron(II)-1,10-phenanthroline complex below pH 2.5.Attempts to incorporate all the relevant reagents (1,10-phenanthroline, potassium hexacyanoferrate(III), potassium hydrogen sulphate, sodium acetate, and potassium chloride) into a modifying coated PVA film were partially successful. The coated electrode behaved very satisfactorily with freshly-prepared iron(II) and iron(III) solutions but with hydrolysed iron, the iron(III) signal was only 85% that of iron(II).  相似文献   

19.
An electrochemical method based on adsorptive stripping chronopotentiometry (SCP) with a rotating mercury film electrode has been developed for the determination of dissolved iron (III) at subnanomolar concentrations in estuarine and coastal waters. The detection limit was 0.11 nM after adsorption time of 60 s. Compared to the other chronopotentiometric methods available for dissolved iron measurement in natural and estuarine waters, the procedure described here exhibits a 15-fold better sensitivity. Therefore, it allows one to accurately quantify concentrations commonly found in estuarine and coastal waters. Moreover, by using the speciation scheme proposed by Aldrich and van den Berg (Electroanalysis 10 (1998) 369), several forms could be measured, i.e. reactive iron (Fe R) and reactive iron (III) (FeIII R), or estimated, i.e. complexed iron (Fe C) and reactive iron (II) (FeII R). The method described here is reliable, fast, inexpensive and compact. It was applied successfully to the study of the chemical speciation of dissolved iron along the salinity gradient of the Aulne estuary (Brittany-France).  相似文献   

20.
The potential application of commercial screen-printed gold electrodes (SPGEs) for the trace determination of lead, copper, and mercury in fuel bioethanol is demonstrated. Samples were simply diluted in 0.067 mol L−1 HCl solution prior to square-wave anodic stripping voltammetry (SWASV) measurements recorded with a portable potentiostat. The proposed method presented a low detection limit (<2 μg L−1) for a 240 s deposition time, linear range between 5 and 300 μg L−1, and adequate recovery values (96–104%) for spiked samples. This analytical method shows great promise for on-site trace metal determination in fuel bioethanol once there is no requirement for sample treatment or electrode modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号