首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a simple and effective molecular imprinting technique to target compounds with flexible structure. Domoic acid (DA), an amnesic shellfish poison, was used as the target compound while many acidic compounds (mono-, di-, and tricarboxylic acids) were used as template molecules for molecularly imprinted polymers (MIPs). Evaluation of selective recognition abilities using liquid chromatography revealed that the highest selective recognition ability for DA was found when pentane-1,3,5-tricarboxylic acid (1,3,5-PeTA) was used as the template. Computer modeling studies of the DA structure suggested that the observed selective recognition depended on the structural changes in DA at the recognition site of the MIPs as well as spatial distance between the COOH groups in DA and 1,3,5-PeTA. Using the 1,3,5-PeTA-MIP, we could easily purify DA from blue mussel extracts by solid-phase extraction.  相似文献   

2.
Capillary electrophoresis is one of the separation tools commonly used in conjugation with mass spectrometry. Its primary purpose is to resolve the components in a sample mixture prior to mass spectral identification. Moreover, an increasing number of applications reported in the literature involve the use of CE for additional purposes, such as sample preparation and derivatization, and the study of biochemical properties. This review provides an overview on the various roles of CE beyond that of a simple separation tool. While the scope focuses on the area of interest rather than a predefined time period, the majority of the references highlighted were initially published within the past five years.  相似文献   

3.
A cortisol-binding polymer was prepared by utilising a non-covalent molecular imprinting polymerisation technique. The obtained polymer was packed in a high-performance liquid chromatography (HPLC) column; the selectivity was studied by liquid chromatography, eluting cortisol, cortisone, corticosterone, progesterone, 11-ketoprogesterone, 11alpha-hydroxyprogesterone, 17alpha-hydroxyprogesterone, cortisol 21-hemisuccinate, and cortisol 21-acetate with chloroform, containing 0.5% (v/v) acetic acid, as mobile phase. The mechanism of molecular imprinting was confirmed and a good selectivity for cortisol, with limited recognition for cortisone and 11alpha-hydroxyprogesterone, was found.  相似文献   

4.
Zhou WH  Guo XC  Zhao HQ  Wu SX  Yang HH  Wang XR 《Talanta》2011,84(3):777-782
In this work, a highly selective sample cleanup procedure that combining molecular imprinting technique (MIT) and solid phase extraction (SPE) was developed for the isolation of domoic acid (a fascinating marine toxin) from seafood samples. The molecular imprinting polymer (MIP) for domoic acid was prepared using 1,3,5-pentanetricarboxylic acid as the template molecule instead of domoic acid. 4-Vinyl pyridine was used as the functional monomer and ethylene glycol dimethacrylate was used as the cross-linking monomer. The obtained imprinted polymer showed high affinity to domoic acid and was used as selective sorbent for the SPE of domoic acid from seafood samples. An off-line molecularly imprinted solid phase extraction (MISPE) method followed by high-performance liquid chromatography (HPLC) with diode-array detection for the detection of domoic acid was also established. Good linearity was obtained from 0.5 mg L−1 to 25 mg L−1 (R2 > 0.99) with a quantitation limit of 0.1 mg L−1, which was sufficient to determine domoic acid at the maximum level permitted by several authorities. The mean recoveries of domoic acid from mussel extracts were 93.4-96.7%. It was demonstrated that the proposed MISPE-HPLC method could be applied to direct determination of domoic acid from seafood samples.  相似文献   

5.
Molecularly imprinted polymers of glycyrrhizic acid were prepared by solution polymerization using glycyrrhizic acid as the template molecule, N‐vinypyrrolidone as functional monomer, N ,N‐methylene bisacrylamide as cross‐linker and ascorbic acid and hydrogen peroxide as initiators. Focused on the adsorption capacity and separation degree of the polymer to glycyrrhizic acid, the effects of the monomers, crosslinker and initiators were investigated and optimized. Finally, the structure of the polymer was characterized by using Fourier transform infrared spectroscopy and scanning electron microscopy. To obtain objective results, non‐imprinted molecular polymers prepared under the same conditions were also characterized. The adsorption quantity of the polymer was measured by high‐performance liquid chromatography. Under the optimum conditions, the maximum adsorption capacity of glycyrrhizic acid approached 15 mg/g, and the separation degree was as high as 2.5. The adsorption kinetics could be well described by a pseudo‐first‐order model, while the thermodynamics of the adsorption process could be described by the Langmuir model.  相似文献   

6.
A selective sample cleanup method using molecularly imprinted polymers was developed for the separation of domoic acid (a shellfish toxin) from shellfish samples. The molecularly imprinted polymers for domoic acid was prepared by emulsion polymerization using 1,3,5‐pentanetricarboxylic acid as the template molecule, 4‐vinyl pyridine as the functional monomer, ethylene glycol dimethacrylate as the crosslinker, and Span80/Tween‐80 (1:1 v/v) as the composite emulsifiers. The molecularly imprinted polymer showed high affinity to domoic acid with a dissociation constant of 13.5 μg/mL and apparent maximum adsorption capacity of 1249 μg/g. They were used as a selective sorbent for the detection of domoic acid from seafood samples coupled with high‐performance liquid chromatography. The detection limit of 0.17 μg/g was lower than the maximum level permitted by several authorities. The mean recoveries of domoic acid from clam samples were 93.0–98.7%. It was demonstrated that the proposed method could be applied to the determination of domoic acid from shellfish samples.  相似文献   

7.
The adsorption of an anti-domoic acid single-chain Fv (scFv) antibody fragment onto a range of mesoporous silicate supports was investigated. The scFv fragment adsorbed to all materials investigated, and pI had an apparently large effect on coating, with the greatest-and fastest-adsorption found on the most negatively charged silicates. Maximal coating levels attainable did not reflect the pore diameters of the materials. The immobilized antibody was functional on all materials and bound its antigen, a naturally occurring neurotoxin produced by shellfish, in a rapidly saturating manner that suggested the antibody adsorbed in a multilayer on the mesoporous particles. The antigen:antibody ratio decreased from 1:1.3 to <1:10 with increasing concentration of immobilized antibody, and the immobilized scFv exhibited no detectable reduction in domoic acid binding over a 42-day incubation period.  相似文献   

8.
The affinity of a 2,4-dichlorophenoxyacetic acid (2,4-D) molecularly imprinted polymer (MIP), which was synthesised directly in an aqueous organic solvent, for its template (2,4-D) was studied and compared with the affinity exhibited by two other reference (control) polymers, NIPA and NIPB, for the same analyte. Zonal chromatography was performed to establish the optimal selectivity, expressed as imprinting factor (IF), under chromatographic conditions more aqueous than those described so far in the literature. Frontal analysis (FA) was performed on columns packed with these polymers, using an optimized mobile phase composed of methanol/phosphate buffer (50/50, v/v), to extract adsorption isotherm data and retrieve binding parameters from the best isotherm model. Surprisingly, the template had comparable and strong affinity for both MIP (K = 3.8 × 104 M−1) and NIPA (K = 1.9 × 104 M−1), although there was a marked difference in the saturation capacities of selective and non-selective sites, as one would expect for an imprinted polymer. NIPB acts as a true control polymer in the sense that it has relatively low affinity for the template (K = 8.0 × 102 M−1). This work provides the first frontal chromatographic characterization of such a polymer in a water-rich environment over a wide concentration range. The significance of this work stems from the fact that the chromatographic approach used is generic and can be applied readily to other analytes, but also because there is an increasing demand for well-characterised imprinted materials that function effectively in aqueous media and are thus well-suited for analytical science applications involving, for example, biofluids and environmental water samples.  相似文献   

9.
The phase inversion technique was used for synthesis anthracene molecularly imprinted membrane (An–MIM) by hybridizing anthracene molecularly imprinted nanoparticles polymer (An–MINP) with cellulose acetate (CA). An–MIM gives high binding capacities toward anthracene, naphthalene, pyrene, benzo(a)pyrene, phenanthrene, and acenaphthylene. Meanwhile, cellulose acetate membrane (CAM) and none imprinted membrane give very low binding capacities toward Anthracene, Naphthalene, Pyrene, Benzo(a)pyrene, Phenanthrene and Acenaphthylene. The separation properties of An–MIM, none imprinted membrane (NIM), and CAM were investigated in terms of selectivity, rejection percentages, and concentrating factor. The optimum operation time of An–MIM was found to be 3 hr. The overall results indicated that the presence of chemical binding sites in the An–MIM plays predominating role in the separation properties. Therefore, An–MIM proved to be highly efficient for the removal of polycyclic aromatic hydrocarbons at various percentages. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Lanthanide(III) (Dy, Gd, Tb and Y) ion imprinted polymer (IIP) materials were synthesized via single pot reaction by mixing lanthanide imprint ion with 5,7-dichloroquinoline-8-ol, 4-vinylpyridine, styrene, divinylbenzene and 2,2'-azobisisobutyronitrile in 2-methoxyethanol porogen. The imprint ion was removed by stirring the above materials (after powdering) with 6 mol/L HCl to obtain the respective lanthanide IIP particles. Y-Dy, Y-Gd and Dy-Gd polymer particles were obtained by physically mixing equal amounts of the respective leached individual lanthanide(III) particles. Control polymer (CP) particles were similarly prepared without imprint ion. Application of the above synthesized polymer particles was tested for separation of Y from Dy, Gd and Tb employing batch and column SPE methods using inductively coupled plasma atomic emission spectrometry for the determination. Optimization studies show that Y present in 500 mL can be preconcentrated using Dy-Gd IIP particles and eluted with 20 mL of 1.0 mol/L of HCl, providing an enrichment factor of approximately 25. Dy-Gd IIP particles offer higher selectivity coefficients for Y over other lanthanides compared to other IIP particles and commercial liquid-liquid extractants. Selectivity studies for Y over other coexisting inorganic species (other than lanthanides) were also conducted and the results obtained show a quantitative separation of Y from other inorganics other than Cu(II) and Fe(III). Furthermore, both batch and column studies indicate the purification of yttrium concentrate from 55.0 +/- 0.2 to 65.2 +/- 0.2% in a single stage of operation.  相似文献   

11.
In this study, new molecularly imprinted polymer (MIP) nanoparticles are designed for selective recognition of different drugs used for the treatment of type 2 diabetes mellitus, i.e. sitagliptin (SG) and metformin (MF). The SG‐ and MF‐imprinted polymer nanoparticles are synthesized by free‐radical initiated polymerization of the functional monomers: methacrylic acid and methyl methacrylate; and the crosslinker: ethylene glycol dimethacrylate. The surface morphology of resultant MIP nanoparticles is studied by atomic force microscopy. Fourier transform infrared spectra of MIP nanoparticles suggest the presence of reversible, non‐covalent interactions between the template and the polymer. The effect of pH on the rebinding of antidiabetic drugs with SG‐ and MF‐imprinted polymers is investigated to determine the optimal experimental conditions. The molecular recognition characteristics of SG‐ and MF‐imprinted polymers for the respective drug targets are determined at low concentrations of SG (50–150 ppm) and MF (5–100 ppm). In both cases, the MIP nanoparticles exhibit higher binding response compared to non‐imprinted polymers. Furthermore, the MIPs demonstrate high selectivity with four fold higher responses toward imprinted drugs targets, respectively. Recycled MIP nanoparticles retain 90% of their drug‐binding efficiency, which makes them suitable for successive analyses with significantly preserved recognition features.  相似文献   

12.
Micro-contact imprinting has been used to form thin-film molecular imprints of ovalbumin (OVA) in polymers supported on glass slides. Thermocalorimetric data was used to optimise the choice of functional monomer and cross-linker to maximise selectivity and minimise non-specific recognition.A polymer comprising polyethyleneglycol 400 dimethacrylate (95 vol.%) and methacrylic acid (5 vol.%) showed both maximum recognition for OVA when made as a molecularly imprinted polymer (MIP), and minimal recognition when made as a non-imprinted, i.e. control polymer. OVA rebinding to the molecularly imprinted polymer, from a buffered 2 µM OVA solution, was 1.55 × 10− 11 mol cm− 2, while the control polymer showed 10-fold less re-binding, i.e. 0.154 × 10− 11 mol cm− 2.Experiments in which human serum albumin (HSA), conalbumin, ovomucoid or lysozyme, were re-bound to the polymers, either as single proteins or in competition with OVA, showed them to have low affinity for the polymer formulation used. Of the competing proteins examined, in non-competitive binding experiments, HSA showed the greatest affinity 0.45 × 10− 11 mol cm− 2 for the OVA imprinted polymer. In two protein competition experiments, i.e. with OVA and a competing protein present at equal concentrations (2 µM), OVA binding to the OVA imprinted polymer was in all cases significantly greater than that of the competitor.  相似文献   

13.
This study is about the preparation of an open tubular capillary column of molecularly imprinted polymer (MIP) and its application to chiral separation by microLC. A non-covalent in-situ molecular imprinting polymerization protocol was used to synthesize the S-ketoprofen MIP. A special procedure was employed to secure formation of an open tubular and rigid MIP layer in a silica capillary of 100 microm id. The capillary was filled with the reaction mixture, sealed, and placed in a water bath at 50 degrees C for 3 h. Then it was flushed with a 0.5 MPa nitrogen flow for 5 min, and was again placed in the water bath for 2 h to complete MIP formation. Methacrylic acid (MAA) has been known to be an inefficient functional monomer in preparation of MIP of an acid molecule. However, MAA was used with ethylene glycol dimethacrylate in preparation of the S-ketoprofen MIP in this study. The open tubular structure and the microLC mode of separation enabled free optimization without any restriction, thus a very good resolution (R=4.7) of ketoprofen enantiomers was achieved when a mobile phase composed of 30% acetonitrile and 70% acetate buffer at pH 4.5 was used with 5 mbar inlet pressure. This may be partially attributed to the open tubular structure of our MIP, enabling low column back-pressure and free optimization of eluent composition, as well as to the small capillary dimensions. Our MIP capillary column also showed some versatility in chiral separation, thus a good chiral separation was observed for naproxen, ibuprofen, and fenoprofen enantiomers.  相似文献   

14.
15.
We developed an approach for the use of polyester dendrimer during the imprinting process to raise the number of recognized sites in the polymer matrix and improve its identification ability. Photoresponsive molecularly imprinted polymers were synthesized on modified magnetic nanoparticles involving polyester dendrimer which uses the reactivity between allyl glycidyl ether and acrylic acid for the high‐yielding assembly by surface polymerization. The photoresponsive molecularly imprinted polymers were constructed using methylprednisoloneacetate as the template, water‐soluble azobenzene involving 5‐[(4, 3‐(methacryloyloxy) phenyl) diazenyl] dihydroxy aniline as the novel functional monomer, and ethylene glycol dimethacrylate as the cross‐linker. Through the evaluation of a series of features of spectroscopic and nano‐structural, this sorbent showed excellent selective adsorption, recognition for the template, and provided a highly selective and sensitive strategy for determining the methylprednisoloneacetate in real and pharmaceutical samples. In addition, this sorbent according to good photo‐responsive features and specific affinity to methylprednisoloneacetate with high recognition ability, represented higher binding capacity, a more extensive specific area, and faster mass transfer rate than its corresponding surface molecularly imprinted polymer.  相似文献   

16.
Selective SPE of derivates of p-hydroxybenzoic acid (pHBA) from plant extract of Melissa officinalis is presented using a molecularly imprinted polymer (MIP) made with protocatechuic acid (PA) as template molecule. MIP was prepared with acrylamide as functional monomer, ethylene glycol dimethacrylate as crosslinking monomer and ACN as porogen. MIP was evaluated towards six phenolic acids: PA, gallic acid, pHBA, vanillic acid (VA), gentisic acid (GeA) and syringic acid (SyrA), and then steps of molecularly imprinted SPE (MISPE) procedure were optimized. The best specific binding capacity of MIP was obtained for PA in ACN (34.7 microg/g of MIP). Other tested acids were also bound on MIP if they were dissolved in this solvent. ACN was chosen as solvent for sample application. M. officinalis was extracted into methanol/water (4:1, v/v), the extract was then evaporated to dryness and dissolved in ACN before application on MIP. Water and ACN were used as washing solvents and elution of benzoic acids was performed by means of a mixture methanol/acetic acid (9:1, v/v). pHBA, GA, PA and VA were extracted with recoveries of 56.3-82.1% using this MISPE method. GeA was not determined in plant extract.  相似文献   

17.
A new and facile fabricating method for lysozyme molecularly imprinted polymer beads (lysozyme-MIP beads) in aqueous media was presented. Mesoporous chloromethylated polystyrene beads (MCP beads) containing dithiocarbamate iniferter (initiator transfer agent terminator) were used as supports for the grafting of lysozyme imprinted copolymers with acrylamide and N,N′-methylenebisacrylamide through surface initiated living-radical polymerization (SIP). After the polymerization, a layer of lysozyme-MIP was formed on the MCP beads. The SIP allowed an efficient control of the grafting process and suppressed solution propagation. Therefore, the obtained lysozyme-MIP beads had a large quantity of well-distributed pores on the surface without any visible gel formation in solution and were more advantageous comparing with traditional MIPs which were prepared by traditionally initiated radical polymerization. The obtained composites were characterized by Fourier transform infrared spectroscopy, elemental analysis, nitrogen sorption analysis and scanning electron microscopy. Chromatographic behaviors of the column packed with lysozyme-MIP beads exhibited ability in separating lysozyme from competitive protein (bovine hemoglobin, bovine serum albumin, ovalbumin or cytochrome c) in aqueous mobile phase.  相似文献   

18.
One of the main challenges in the molecularly imprinted polymers (MIP) field is the proper MIP design for water-soluble compounds because of appearance of serious drawbacks in polar solvents and insolubility of those compounds in non-polar solvents which are commonly used for MIP synthesis. In this work a novel and simple method for synthesis of molecularly imprinted polymers for a water-soluble compound was introduced. Pyridoxine was chosen as a target molecule and the ion-pair complex formed between pyridoxine ion (Py+) and dodecyl sulfate ion (DS) was transferred into the chloroform via liquid-liquid extraction. Then polymerization was carried out in chloroform. The molecular mechanics and density functional theory were proposed to screen proper monomer. Binding energy, ΔE, of a template and a monomer as a measure of their interaction was considered. Ion-pair [Py+-DS] was supposed as a template molecule and acrylic acid, methacrylic acid, allyamine, vinylpridine and 2-hydroxy ethyl methacrylate were as tested monomers. The MIP synthesized using acrylic acid showed the highest selectivity to pyridoxine as predicted from the ΔE calculation. The obtained MIP showed very high affinity against vitamin B6 in comparison to non-imprinted polymers (NIP). It was proved that the obtained MIP with introduced method was much better than that prepared in methanol as porogen. It was showed that the MIP prepared by this new method could be used as an adsorber for extraction and determination of pyridoxine in real and synthetic samples.  相似文献   

19.
Summary The distribution coefficients of Ag(I), Au(III), Cd(II), Cu(II), Fe(III), Hg(II), Ni(II), Pb(II), Pt(IV), and Zn(II) on a new chelating resin containing -hydroxydithiocinnamic acid at various acidity were studied. In the strongly acidic region, the resin shows high affinity for Ag(I), Hg(II), Au(III) and Pt(IV) and high resistance against air oxidation. The effect of diverse foreign ligands on the sorption of metal ions and the possibility of application to speciation studies with this resin were also considered. Some quantitative separations of Cd-Cu-Pb, Cu-Au and Au-Pt with this resin column were described. Detection of the chromatography system was carried out via post column derivatisation of the column effluent with PAR at 520 nm or direct UV detection of the chloride complexes at 215 nm.  相似文献   

20.
Molecularly imprinted microspheres (MIMs) against trimethoprim (TMP), prepared by aqueous microsuspension polymerization, bound strongly to TMP, by electrostatic and other non-covalent interactions. The effects of pH, kind and ionic strength (I) of buffer on capacity factors (k') have been discussed in detail. The capacity factors for TMP increased with increasing pH of both acetate and phosphate buffers. The effects of ionic strength on capacity factors were very substantial and the linear relationship between logk' and logI was described by the equation logk'=0.3162-0.4420logI with R=-0.9995. The results showed that pH 3.5 acetate buffer (0.05 mol L(-1)) containing 0.1 mol L(-1) sodium chloride and a 1:9 ratio of buffer to methanol were the optimum conditions for separation and determination of TMP. The calibration plot of peak area against concentration was linear with R=0.9979.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号