共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
以2-巯基苯骈噻唑为修饰剂,铅离子为印迹离子成功制备分子印迹功能介孔材料,并用扫描电镜(SEM)、傅里叶红外光谱对材料进行了结构表征。铅离子分子印迹功能介孔材料能很好地将Pb(II)与性质相近的二价重金属离子Cu(II),Cd(II)和Hg(II)分离,具有非常好的吸附选择性,且静态吸附容量0.64 mmol/g。利用该材料制备的分离富集柱可以很好地富集溶液中痕量铅离子,且仅用2 mL 0.5 mol/L EDTA以0.4 mL/min流速即可完全洗脱,富集倍数高达250倍。样品预富集后的火焰原子吸收光度法线性范围为0.5~1.2×104μg/L,r=0.999 2,检出限(3σ,n=11)为0.04μg/L。利用功能介孔材料分离富集水样中痕量铅离子,用火焰原子吸收法测定含量,相对标准偏差(RSD)小于等于3%(n=6),回收率在98.2%~99.1%之间。 相似文献
3.
The effects of water absorption on hydrophilic polymer matrices based on carboxylic functionalized glucose (glucose maleic acid ester vinyl resin) and epoxy resins were studied as a function of curing temperature. The matrix cured at higher temperature shows compact crosslinks due to the higher concentration of ether bonds comparing to the matrix cured at the lower temperature. The polymer matrices cured at different temperatures were immersed in water at room temperature for 1000 h and the thermomechanical properties of the cured polymers were characterized using DMA and TGA. Two types of sorbed water were identified. Type I sorbed water contributed mainly to increasing the weight and to the decrease in Tg due to a plasticizer effect. Type II sorbed water was not removed after heating the polymer to 110 °C for an hour. Type II sorbed water causes changes in the mechanical properties of the polymers cured at different temperatures depending on the crosslinks of the matrix. The cured matrix at the higher temperature has the comparatively tight crosslinks in the network structure and the sorbed water molecule disturbed the polymer network resulting in the degradation of the matrix such as microcracks. 相似文献
4.
A microextraction procedure based on a task‐specific ionic liquid for the separation and preconcentration of lead ions from red lipstick and pine leaves 下载免费PDF全文
Asma Saljooqi Tayebeh Shamspur Maryam Mohamadi Daryoush Afzali Ali Mostafavi 《Journal of separation science》2015,38(10):1777-1783
First, the extraction and preconcentration of ultratrace amounts of lead(II) ions was performed using microliter volumes of a task‐specific ionic liquid. The remarkable properties of ionic liquids were added to the advantages of microextraction procedure. The ionic liquid used was trioctylmethylammonium thiosalicylate, which formed a lead thiolate complex due to the chelating effect of the ortho‐positioned carboxylate relative to thiol functionality. So, trioctylmethylammonium thiosalicylate played the roles of both chelating agent and extraction solvent simultaneously. Hence, there is no need to use a ligand. The main parameters affecting the efficiency of the method were investigated and optimized. Under optimized conditions, this approach showed a linear range of 2.0–24.0 ng/mL with a detection limit of 0.0010 ng/mL. The proposed method was applied to the extraction and preconcentration of lead from red lipstick and pine leaves samples prior to electrothermal atomic absorption spectroscopic determination. 相似文献
5.
Korn Md Andrade JB Jesus DS Lemos VA Bandeira ML Santos WN Bezerra MA Amorim FA Souza AS Ferreira SL 《Talanta》2006,69(1):16-24
Lead is recognized worldwide as a poisonous metal. Thus, the determination of this element is often required in environmental, biological, food and geological samples. However, these analyses are difficult because such samples contain relatively low concentrations of lead, which fall below the detection limit of conventional analytical techniques such as flame atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry. Several preconcentration procedures to determine lead have therefore been devised, involving separation techniques such as liquid-liquid extraction, solid phase extraction, coprecipitation and cloud point extraction. Citing 160 references, this paper offers a critical review of preconcentration procedures for determining lead using spectroanalytical techniques. 相似文献
6.
Graphene, a novel class of carbon nanostructures, has great promise for use as sorbent materials because of its ultrahigh specific surface area. A new method using a column packed with graphene as sorbent was developed for the preconcentration of trace amounts of lead (Pb) using dithizone as chelating reagent prior to its determination by flame atomic absorption spectrometry. Some effective parameters on the extraction and complex formation were selected and optimized. Under optimum conditions, the calibration graph was linear in the concentration range of 10.0–600.0 μg L−1 with a detection limit of 0.61 μg L−1. The relative standard deviation for ten replicate measurements of 20.0 and 400.0 μg L−1 of Pb were 3.56 and 3.25%, respectively. Comparative studies showed that graphene is superior to other adsorbents including C18 silica, graphitic carbon, and single- and multi-walled carbon nanotubes for the extraction of Pb. The proposed method was successfully applied in the analysis of environmental water and vegetable samples. Good spiked recoveries over the range of 95.3–100.4% were obtained. This work not only proposes a useful method for sample preconcentration, but also reveals the great potential of graphene as an excellent sorbent material in analytical processes. 相似文献
7.
Romina P. Monasterio Jorgelina C. Altamirano Luis D. Martínez Rodolfo G. Wuilloud 《Talanta》2009,77(4):1290-2300
A novel on-line preconcentration and determination system based on a fiber-packed column was developed for speciation analysis of Cr in drinking water samples prior to its determination by flame atomic absorption spectrometry (FAAS). All variables involved in the development of the preconcentration method including, pH, eluent type, sample and eluent flow rates, interfering effects, etc., were studied in order to achieve the best analytical performance. A preconcentration factor of 32 was obtained for Cr(VI) and Cr(III). The levels of Cr(III) species were calculated by difference of total Cr and Cr(VI) levels. Total Cr was determined after oxidation of Cr(III) to Cr(VI) with hydrogen peroxide. The calibration graph was linear with a correlation coefficient of 0.999 at levels near the detection limit and up to at least 50 μg L−1. The relative standard deviation (R.S.D.) was 4.3% (C = 5 μg L−1 Cr(VI), n = 10, sample volume = 25 mL). The limit of detection (LOD) for both Cr(III) and Cr(VI) species was 0.3 μg L−1. Verification of the accuracy was carried out by the analysis of a standard reference material (NIST SRM 1643e “Trace elements in natural water”). The method was successfully applied to the determination of Cr(III) and Cr(VI) species in drinking water samples. 相似文献
8.
9.
The dispersive liquid-liquid microextraction (DLLME) was combined with the flame atomic absorption spectrometry (FAAS) for determination of lead in the water samples. Diethyldithiophosphoric acid (DDTP), carbon tetrachloride and methanol were used as chelating agent, extraction solvent and disperser solvent, respectively. A new FAAS sample introduction system was employed for the microvolume nebulization of the non-flammable chlorinated organic extracts. Injection of 20 μL volumes of the organic extract into an air-acetylene flame provided very sensitive spike-like and reproducible signals.Some effective parameters on the microextraction and the complex formation were selected and optimized. These parameters include extraction and disperser solvent type as well as their volume, extraction time, salt effect, pH and amount of the chelating agent. Under the optimized conditions, the enrichment factor of 450 was obtained from a sample volume of 25.0 mL. The enhancement factor, calculated as the ratio of the slopes of the calibration graphs with and without preconcentration, which was about 1000. The calibration graph was linear in the range of 1-70 μg L−1 with a detection limit of 0.5 μg L−1. The relative standard deviation (R.S.D.) for seven replicate measurements of 5.0 and 50 μg L−1 of lead were 3.8 and 2.0%, respectively. The relative recoveries of lead in tap, well, river and seawater samples at the spiking level of 20 μg L−1 ranged from 93.8 to 106.2%. The characteristics of the proposed method were compared with those of the liquid-liquid extraction (LLE), cloud point extraction (CPE), on-line and off-line solid-phase extraction (SPE) as well as co-precipitation, based on bibliographic data. Operation simplicity, rapidity, low cost, high enrichment factor, good repeatability, and low consumption of the extraction solvent at a microliter level are the main advantages of the proposed method. 相似文献
10.
An analytical method using silica gel chemically modified with zirconium (IV) phosphate for preconcentration of lead and copper, in a column system, and their sequential determination by flame atomic absorption spectrometry (FAAS), was developed. Sample solutions are passed through a glass column packed with 100 mg of the sorbent material, at pH 4.5, and lead and copper are eluted with 1.0 mol l−1 HNO3 at a flow rate of 2.0 ml min−1. The extraction of copper is affected by Fe(II), Mn(II), Zn(II), Ni(II) and Co(II) while only Fe(II) interferes in the lead determination. These interferences may be overcome with an appropriate addition of a KI or NaF solution. An enrichment factor of 30 was obtained for both metals. While the limits of detection (3σ) were 6.1 and 1.1 μg l−1, for Pb and Cu, respectively, the limits of determination were 16.7 and 3.3 μg l−1. The precision expressed as relative standard deviation (R.S.D.) obtained for 3.3 μg l−1 of Cu and 16.7 μg l−1 of Pb were 4.3 and 4.7%, respectively, calculated from ten measurements. The proposed method was evaluated with reference material and was applied for the determination of lead and copper in industrial and river waters. 相似文献
11.
Metal determinations at low concentration levels (≤ng mL−1) comprise one of most important targets in analytical chemistry. This interest also increases in different areas such as biology, medicine, environment and food samples. In spite of inherent high sensitivities obtained for electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma-mass spectrometry (ICP-MS), these techniques have some limitations depending on the concomitants. As a result, interest in preconcentration techniques still continues increasingly for trace metal determinations by flame atomic absorption spectrometry (FAAS) due to the high accuracy of this method.In this work, thioureasulfonamide resin was synthesized, characterized and applied as a new sorption material for determinations of cadmium and lead in water samples. The method is based on the sorption of Cd and Pb ions on the synthesized resin without using any complexing reagent. The optimization of experimental conditions was performed using factorial design including pH, amount of resin, contact time, first sample volume and final eluent volume. Using the experimental conditions defined in the optimization, the method was applied to the determination and preconcentration of Cd and Pb at ng mL−1 level in natural water. Flame AAS was used for trace metal determinations. This method exhibits the superiority in compared to the other adsorption reagents because of the fact that there is no necessity of any complexing reagent and optimum pH of solution presents in acidic media. Consequently, 600- and 360-fold improvements in the sensitivity of FAAS were achieved by combining the slotted tube atom trap-atomic absorption spectrometry (STAT-FAAS) and the purposed enrichment method for Cd and Pb, respectively. 相似文献
12.
A sensitive and simple solid-phase preconcentration procedure for enrichment of cadmium prior to analysis by flame atomic absorption spectrometry (FAAS) is described. The method is based on the adsorption of cadmium as CdI42− on naphthalene-methyltrioctylammonium chloride adsorbent, elution by nitric acid and subsequent determination by FAAS. The effect of pH, iodide concentration, sample flow rate, volume of the sample and diverse ions on the recovery of the analyte was investigated and optimum conditions were established. A preconcentration factor of 40 was achieved using the optimum conditions. The calibration graph was linear in the range 1-100 ng ml−1 cadmium in the initial solution. The detection limit based on the 3Sb criterion was 0.6 ng ml−1 and the relative standard deviations (RSD) were 3.9 and 1.05% for 5 and 40 ng ml−1, respectively (n=8). The method was successfully applied to the determination of cadmium added to river, tap and Persian Gulf water samples. 相似文献
13.
The potential of multiwalled carbon nanotubes (MWNTs) as solid-phase extraction adsorbent for the separation and preconcentration of gold has been investigated. Gold could be adsorbed quantitatively on MWNTs in the pH range of 1–6, and then eluted completely with 2 mL of 3% thiourea in 1 mol L− 1 HCl solution at a flow rate of 0.5 mL min− 1. A new method using a microcolumn packed with MWNTs as sorbent has been developed for the preconcentration of trace amount of Au prior to its determination by flame atomic absorption spectrometry. Parameters influencing the preconcentration of Au, such as pH of the sample, sample flow rate and volume, elution solution and interfering ions, have been examined and optimized. Under the optimum experimental conditions, the detection limit of this method for Au was 0.15 µg L− 1 with an enrichment factor of 75, and the relative standard deviation (R.S.D) was 3.1% at the 100 µg L− 1 Au level. The method has been applied for the determination of trace amount of Au in geological and water samples with satisfactory results. 相似文献
14.
提出了纳米硅羟基磷灰石(Si-HAP)分离富集,火焰原子吸收光谱法(FAAS)测定水样中痕量铅的新方法。考察了铅在纳米Si-HAP上的吸附动力学、最佳酸度和吸附容量。实验结果表明:在最佳实验条件下,纳米Si-HAP能定量、快速地吸附水中的痕量Pb2+,其静态吸附容量24.33 mg/g;吸附在纳米Si-HAP上的Pb2+可用0.01mol/L EDTA-Ca完全洗脱。本法对Pb2+的检出限为1.33 ng/mL,相对标准偏差为4.0%(n=11,c=1μg/mL),加标回收率在94.9%~102.0%之间。方法用于实际水样中铅的测定,结果满意。 相似文献
15.
Somsupang Meesri 《Microchemical Journal》2007,87(1):47-55
Polystyrene-divinylbenzene resin (PS-DVB) was functionalized with a benzothiazole group. PS-DVB with amino group was initially prepared by nitration and reduction reactions and subsequently treated with ethyl 2-benzothiazolylacetate (BA) to obtain the chelating resin with an amide linkage (BA-PS-DVB). Meanwhile, the amino-PS-DVB was diazotized and coupled with BA to obtain the chelating resin with an azo linkage (azo-BA-PS-DVB). The resins were characterized by elemental analysis and infrared spectroscopy and evaluated for their extraction of Cd(II), Cu(II) and Pb(II) ions in water before their determinations by flame atomic absorption spectrometry (FAAS). Extraction conditions were optimized for batch method such as the pH of the solution, the extraction time and the adsorption isotherm. The optimum pH for the extraction of Cd(II), Cu(II) and Pb(II) are 8.0, 7.0 and 6.0, respectively, while the equilibrium time of all ions was reached within 10-20 min. The adsorption behavior of all the metal ions followed the Langmuir adsorption isotherm. In the column method, the optimum flow rates of metal sorption onto BA-PS-DVB and azo-BA-PS-DVB columns were 2.5 and 4.0 mL min− 1. Metal ions sorbed onto columns were eluted by 0.5 to 2.0 M HNO3. The preconcentration factors of Cd(II) and Cu(II) on azo-BA-PS-DVB and Cu(II) on BA-PS-DVB were 50, 50, and 20, respectively. The present column method gave acceptable validation results: 71.2 and 74.0% recovery for Cd(II) and Cu(II) and an overall relative standard deviation (R.S.D) less than 10% (n = 15). The proposed method was applicable for determining Cu(II) in drinking water. 相似文献
16.
Michael Sperling Xiu-ping Yan Bernhard Welz 《Spectrochimica Acta Part B: Atomic Spectroscopy》1996,51(14):1891-1908
A flow injection on-line sorption preconcentration electrothermal atomic absorption spectrometric system for fully automatic determination of lead in water was investigated. The discrete non-flow-through nature of ETAAS, the limited capacity of the graphite tube and the relatively large volume of the knotted reactor (KR) are obstacles to overcome for the on-line coupling of the KR sorption preconcentration system with ETAAS. A new FI manifold has been developed with the aim of reducing the eluate volume and minimizing dispersion. The lead diethyldithiocarbamate complex was adsorbed on the inner walls of a knotted reactor made of PTFE tubing (100 cm long, 0.5 mm i.d.). After that, an air flow was introduced to remove the residual solution from the KR and the eluate delivery tube, then the adsorbed analyte chelate was quantitatively eluted into a delivery tube with 50 μl of ethanol. An air flow was used to propel the eluent from the eluent loop through the reactor and to introduce all the ethanolic eluate onto the platform of the transversely heated graphite tube atomizer, which was preheated to 80°C. With the use of the new FI manifold, the consumption of eluent was greatly reduced and dispersion was minimized. The adsorption efficiency was 58%, and the enhancement factor was 142 in the concentration range 0.01–0.05 μg l−1 Pb at a sample loading rate of 6.8 ml min−1 with 60 s preconcentration time. For the range 0.1–2.0 μg l−1 of Pb a loading rate of 3.0 ml min−1 and 30 s preconcentration time were chosen, resulting in an adsorption efficiency of 42% and an enhancement factor of 21, respectively. A detection limit (3σ) of 2.2 ng l−1 of lead was obtained using a sample loading rate of 6.8 ml min−1 and 60 s preconcentration. The relative standard deviation of the entire procedure was 4.9% at the 0.01 μg l−1 Pb level with a loading rate of 6.8 ml min−1 and 60 s preconcentration, and 2.9% at the 0.5 μg l−1 Pb level with a 3.0 ml min−1 loading rate and 30 s preconcentration. Efficient washing of the matrix from the reactor was critical, requiring the use of the standard addition method for seawater samples. The analytical results obtained for seawater and river water standard reference materials were in good agreement with the certified values. 相似文献
17.
Factorial design in the optimization of preconcentration procedure for lead determination by FAAS 总被引:1,自引:0,他引:1
The present paper proposes a preconcentration procedure for lead determination using flame atomic absorption spectrometry (FAAS). It is based on lead(II) ions extraction as brilliant cresyl blue (BCB) complex and its sorption onto Diaion HP-2MG, a methacrylic ester copolymer. The optimization step was carried out using factorial design and the variables studied were pH, shaking time and reagent concentration. In the established experimental conditions, lead can be determinate with a limit of detection of 3.7 μg L−1 lead (N = 20) and a relative standard deviation of 7% for a lead concentration of 100 μg L−1. The accuracy was confirmed by analysis of a certified reference material, the stream sediment furnished by National Research Centre for Certified Reference Materials (NRCCRM), China (GBW 07310). Effect of other ions in the procedure proposed was also studied. The method was applied for lead determination in real samples of water, tea, soil and dust. Tests of addition/recovery in the experiments for lead determination in water samples revealed that the proposed procedure could be applied satisfactorily for analysis of these samples. 相似文献
18.
Solidified floating organic drop microextraction (SFODME) was successfully used as a sample preparation method for graphite furnace atomic absorption spectrometry (GFAAS). 20 μL of 1-undecanol containing dithizone as the chelating agent (2 × 10−4 mol L−1) was transferred to the water samples containing lead ions, and the solution was stirred for the prescribed time. The sample vial was cooled in an ice bath for 5 min. The solidified extract was transferred into a conical vial where it melted immediately, and then 10 μL of it was analyzed by GFAAS.Factors that influence the extraction and complex formation, such as pH, concentration of dithizone, extraction time, sample volume, and ionic strength were optimized. Under the optimized conditions, a good relative standard deviation of ±5.4% at 10 ng L−1 and detection limit of 0.9 ng L−1 were obtained. The procedure was applied to tap water, well water, river water and sea water, and accuracy was assessed through the analysis of certified reference water or recovery experiments. 相似文献
19.
M.C. Yebra-Biurrun S. Cancela-Pérez A. Moreno-Cid-Barinaga 《Analytica chimica acta》2005,533(1):51-56
Continuous ultrasound-assisted extraction has been coupled with preconcentration and flame atomic absorption spectrometry for the determination of cadmium and lead in mussel samples. Experimental designs were used for the optimisation of the leaching and preconcentration steps. The use of diluted nitric acid as extractant in the continuous mode at a flow rate of 3.5 ml min−1 and room temperature was sufficient for quantitative extraction of these trace metals. A minicolumn containing a chelating resin (Chelite P, with aminomethylphosphoric acid groups) was proved as an excellent material for the quantitative preconcentration of cadmium and lead prior to their flame atomic absorption detection. A flow injection manifold was used as interface for coupling the three analytical steps, which allowed the automation of the whole analytical process. A good precision of the whole procedure (2.0 and 2.3%), high enrichment factors (20.5 and 11.8) and a detection limit of 0.011 and 0.25 μg g−1 for cadmium and lead, respectively, were obtained for 80 mg of sample. The sample throughputs were ca. 16 and 14 samples h−1 for cadmium and lead, respectively. The accuracy of the analytical procedures was verified by using a standard reference material (BCR 278-R, mussel tissue) and the results were in good agreement with the certified values. The method was successfully applied to the determination of trace amounts of cadmium and lead in mussel samples from the coast of Galicia (NW, Spain). 相似文献
20.
This work assesses the potential of a new adsorptive material, Amberlyst 36, for the separation and preconcentration of trace manganese(II) from various media. It is based on the sorption of manganese(II) ions onto a column filled with Amberlyst 36 cation exchange resin, followed by the elution with 5 mL of 3 mol/L nitric acid and determination by flame atomic absorption spectrometry (FAAS) without interference of the matrix. Different factors including pH of sample solution, sample volume, amount of resin, flow rate of sample solution, volume and concentration of eluent, and matrix effects for preconcentration were investigated. Good relative standard deviation (3%) and high recovery (>95%) at 100 μg/L and high enrichment factor (200) and low analytical detection limit (0.245 μg/L) were obtained. The adsorption equilibrium was described well by the Langmuir isotherm model with maximum adsorption capacity of 88 mg/g of manganese on the resin. The method was applied for the manganese determination by FAAS in tap water, commercial natural drinking water, commercial treated drinking water and commercial tea bag sample. The accuracy of the method is confirmed by analyzing the certified reference material (tea leaves GBW 07605). The results demonstrated good agreement with the certified values. 相似文献