首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chen F  Wang S  Guo W  Hu M 《Talanta》2005,66(3):755-761
High performance capillary electrophoresis (HPCE) was developed for quantitative determination of 18 phenylthiohydantoin (PTH)-amino acids. The influence of electrolyte concentration, pH, organic modifier and applied voltage on HPCE performance was investigated. The HPCE separation of a PTH-amino acids mixture was much improved by adding organic modifier and Tris-boric acid buffer to the run buffer. After optimization of the method, 17 PTH-amino acids in a solution containing 18 PTH-amino acids could be separated using 400 mmol l−1 Tris-boric acid, 1.0 mmol l−1 diethylamine at pH 9.5 adjusted with 0.1 mol l−1 NaOH as a run buffer, voltage of 25 kV was applied, temperature was maintained at 25 °C, detection wavelength was 254 nm. The precision (n = 7) of this method is less than 3.2% (peak area) and 1.1% (migration time) of relative standard deviation (R.S.D.). Linearity was established over the concentration range 50-1000 μM of each derivative, with correlation coefficients (r) ranging between 0.9904 and 0.9993. The detection limits (S/N = 3) range from 2 to 48 μmol l−1. The method was applied to determine amino acids in Sargassum fusiforme, a marine algae collected from Tongtou County of Zhejiang Province in China with satisfactory results.  相似文献   

2.
An isocratic chromatographic separation with amperometric detection of underivatized amino acids at a copper oxyhydroxide modified glassy carbon electrode is described. A simple and sensitive quantitation procedure of amino acids without the need of tedious and time-consuming derivatization step was achieved by coupling anion-exchange chromatography with electrochemical detection. The effects of hydroxide, nitrate and acetonitrile concentration in the mobile phase on the capacity factors and peak resolution was evaluated. Under the optimized isocratic chromatographic conditions (i.e. 60 mM NaOH) and under constant applied potentials (i.e. 0.55 V versus Ag/AgCl) the detection limit ranged between 4 and 24 pmol injected and the linear dynamic range spanned generally over three or four order of magnitude for all investigated amino acid compounds. Direct determination of several common free amino acids in beer and milk samples were performed.  相似文献   

3.
Xiu-juan Yang  Cui Liu  Ou-lian Li 《Talanta》2010,82(5):1935-1942
A new electromagnetic induction detector for capillary electrophoresis and its application are described. The detector is consisted of an inductor, a resistor, a high-frequency signal generator and a high-frequency millivoltmeter. The conditions affecting the response of the detector, including dimension of the magnetic ring, position of the capillary, number of coil turns, frequency, excitation voltage and value of the resistor were examined and optimized. The feasibility of the proposed detector was evaluated by detection of inorganic ions and separation of amino aids. Its quantification applicability was investigated by determination of aspirin and paracetamol in pharmaceutical preparation (Akafen powder). The primary factors affecting separation efficiency, which include variety of buffer, buffer concentration, injection time and injection height and separation voltage, were researched. Experimental results demonstrated that this new detector showed a well-defined correlation between sample concentrations and responses (r = 0.997-0.999), with detection limits of 30 μmol L−1 for aspirin and 10 μmol L−1 for paracetamol, as well as good reproducibility and stability. Compared with currently available detection techniques, this new detector has several advantages, such as simple construction, no complicated elements, ease of assembly and operation, and potential for universal applications. It can be an alternative to the traditional methods in the quality control of the pharmaceutical preparations.  相似文献   

4.
The separation of 17 “common” underivatized amino acids was attempted by open tubular capillary electrochromatography (OT-CEC) in fused-silica capillaries coated with Rh(III) tetrakis(phenoxyphenyl)porphyrinate (Rh(III)TPP(m-OPh)4OAc) using sodium phosphate and Tris–phosphate buffers as background electrolytes (BGEs). The OT-CEC separation of amino acids was compared with that obtained by capillary zone electrophoresis in bare fused-silica capillaries using the same BGEs. The amino acids were not derivatized and the UV-absorption detection was set at 200 nm. Depending on the experimental conditions at least 15 amino acids were separated. The best separations were obtained in a Rh(III)TPP(m-OPh)4OAc-coated capillary in 50 mM Tris–100 mM phosphate buffer at pH 2.25. Separation of the critical triplet Val–Ile–Leu was always at least indicated being better at higher BGE concentrations. Regarding the sensitivity of the method, lower concentration limits of detection (LODs) in the coated capillary were obtained for Thr, Gly, Tyr, and Val; the other amino acids exhibited lower LODs in the uncoated capillary. The separation of acidic amino acids was not achieved.  相似文献   

5.
A method for fast sensitive ultraviolet detection of amino acids was developed with a disposable electrophoresis microdevice. The microdevice was conveniently constructed by fixing a fused-silica capillary with a sampling fracture to a printed circuit board. During the separation process, the on-column conjugation of amino acids with cupric cation led to the ultraviolet absorption at 232 nm that could be directly used for fast analysis of amino acids. Using 20 mM boric acid (pH 5.3) containing 5 mM cupric cation and 0.015% Tween 20 as running buffer, this method could completely separate lysine, glutamine and serine at a sampling time of 2 s at +210 V and a separation voltage of +1800 V (240 V/cm). The theoretical plate numbers were from 140,000 to 205,000 plates/m. The linear ranges were from 10 to 500 μM for lysine, 20-1000 μM for glutamine and serine. The novel protocol had been successfully used to detect amino acids in beverage samples with recovery more than 85.0%, indicating its advantages and potential analytical application in different fields.  相似文献   

6.
A micellar electrokinetic capillary chromatography (MEKC) method with laser-induced fluorescence detection (LIF) was developed for analyzing three phosphoamino acids including phosphotyrosine (P-Tyr), phosphoserine (P-Ser), and phosphothreonine (P-Thr). 3-(2-Furoyl)quinoline-2-carboxaldehyde (FQ), a fluorogenic dye, was employed for derivatization of these phosphoamino acids. Results indicated that the complete baseline resolution of each phosphoamino acid was obtained within 10 min, using 20 mmol l−1 sodium borate buffer (pH 9.35) containing 20 mmol l−1sodium deoxycholate (SDC) and 10 mmol l−1 Brij35. Other common amino acids, especially Glu and Asp, did not disturb the assay of these phosphoamino acids. There was a linear relationship between the peak area for analyte and its concentration, with correlation coefficients in the range of 0.9966-0.9996. The concentration detection limits (signal-to-noise = 3) for P-Tyr, P-Ser, and P-Thr were 10, 40, and 75 nmol l−1, respectively. The developed method was successfully applied for determining phosphoamino acids in the hydrolysis sample of a phosphorylated protein kinase.  相似文献   

7.
Li PC  Prasad R 《The Analyst》2003,128(6):706-711
For the first time, we report the acoustic wave detection of chemical species being transported in a capillary tube to a region where acoustic coupling occurs. The measured parameter was a change in phase, which was originally only attributed to a change in solution density as the analyte passed by the detection region. Accordingly, we report the detection of change in phase as various chemical species (e.g. Cy5 dye, Cy5-derivatized glycine and underivatized glycine) were introduced into and migrated along a capillary tube through electrokinetic processes. To improve detection sensitivity, we modified various experimental parameters, such as run buffer concentration, capillary wall thickness and transducer frequency. Although acoustic wave detection was feasible, the peak width and detection limit were inadequate as compared to conventional detection methods for HPLC or CE. Nevertheless, the effects of various physical and chemical relaxation processes on acoustic wave absorption were discussed, and this has shed some light on explaining some observations, which cannot be explained by density differences alone. Accordingly, the acoustic wave method is suggested to investigate these processes, as studied in ultrasonic relaxation spectroscopy, in a flow system.  相似文献   

8.
Chen S  Xu Y  Bi Y  Du W  Liu BF 《Talanta》2006,70(1):63-67
Multiphoton-excited fluorescence by diode laser of continuous wave was uniquely developed for capillary electrophoresis to determine aniline species metabolized from pesticides. To achieve 2-photon excitation fluorescence, derivatization procedure was performed using fluorescein isothiocyanate (FITC). The concentration ratio of FITC to the analytes was discussed for quantitative analysis. Several parameters that influenced separation quality of capillary zone electrophoresis were investigated, such as applied voltage, buffer pH value and concentration, etc. Under the optimized conditions, four pesticide residues were completely separated and determined within 4 min, with detection limit down to zepptomole level (calculated detection volume: 45.0 aL). Quantitative analyses exhibited excellent linear dynamic relationship in the range of about two orders of magnitude. The established method was further validated by testing spiked lake water sample.  相似文献   

9.
In this work, a method for simultaneous determination of amfepramone, fenproporex, sibutramine and fluoxetine was developed by capillary zone electrophoresis with capacitively coupled contactless conductivity detection (C4D) using a homemade capillary electrophoretic system. The optimized conditions for the separation of the pharmaceuticals by CZE were as follows: 50 mmol L− 1 phosphate buffer (pH 5.0) in 50/50 (v/v) mixture of water/acetonitrile as the working electrolyte, 15 kV separation voltage, 25 °C separation temperature, hydrodynamic injection by gravity using 20 cm injection height and 60 s injection time. The detection by C4D was carried out by using a homemade detector, which employs a sinusoidal wave generator operating at 600 kHz frequency and 2 Vpp wave amplitude. The optimized and validated CZE-C4D method was applied for the determination of the studied pharmaceuticals as adulterants in phytotherapeutic formulations commercialized in Brazil for slimming purposes.  相似文献   

10.
Ruecha N  Siangproh W  Chailapakul O 《Talanta》2011,84(5):1323-1328
In this work, the rapid detection of cholesterol using poly(dimethylsiloxane) microchip capillary electrophoresis, based on the coupling of enzymatic assays and electrochemical detection, was developed. Direct amperometric detection for poly(dimethylsiloxane) (PDMS) microchip capillary electrophoresis was successfully applied to quantify cholesterol levels. Factors influencing the performance of the method (such as the concentration and pH value of buffer electrolyte, concentration of cholesterol oxidase enzyme (ChOx), effect of solvent on the cholesterol solubility, and interferences) were carefully investigated and optimized. The migration time of hydrogen peroxide, product of the reaction, was less than 100 s when using 40 mM phosphate buffer at pH 7.0 as the running buffer, a concentration of 0.68 U/mL of the ChOx, a separation voltage of +1.6 kV, an injection time of 20 s, and a detection potential of +0.5 V. PDMS microchip capillary electrophoresis showed linearity between 38.7 μg/dL (1 μM) and 270.6 mg/dL (7 mM) for the cholesterol standard; the detection limit was determined as 38.7 ng/dL (1 nM). To demonstrate the potential of this assay, the proposed method was applied to quantify cholesterol in bovine serum. The percentages of recoveries were assessed over the range of 98.9-101.8%. The sample throughput was found to be 60 samples per hour. Therefore, PDMS microchip capillary electrophoresis, based on the coupling of enzymatic assays and electrochemical detection, is very rapid, accurate and sensitive method for the determination of cholesterol levels.  相似文献   

11.
The combination of capillary electrophoresis (CE) and light-emitting diode-induced fluorescence (LED-IF) detection has been demonstrated in the analysis of major amino acids in tea leaves and beverages. The separation efficiency of amino acids, which were derivatized with naphthalene-2,3-dicarboxaldehyde (NDA), depended on the capillary length and PEO concentration. We suggested that the interactions between the NDA derivatives and poly(ethylene oxide) (PEO) molecules are based on hydrogen bonding, hydrophobic patches, and Van der Waals forces. The magnitude of EOF and the interactions between them can be further controlled by the capillary length. The separation of 17 NDA-amino acids derivatives was completed within 16 min using 0.5% PEO and 60 cm capillary length. The relative standard deviations (R.S.D.) of their migration times (n = 5) were less than 2.7%. Additionally, the limits of detection at signal-to-noise ratio 3 for the tested amino acids ranged from 3.6 to 28.3 nM. Quantitative determination of amino acids in tea leaves and beverages was accomplished by our proposed method. This study showed that amino acid present in highest concentration in tea leaves and beverages is γ-aminobutyric acid and theanine, respectively. The experimental results suggest that our proposed methods have great potential in the investigation of the biofunction of different tea samples.  相似文献   

12.
Xu X  Ye H  Wang W  Yu L  Chen G 《Talanta》2006,68(3):759-764
Four flavonoids (rutin, hyperoside, quercitrin and quercetin) in Houttuynia cordata Thunb. and Saururus chinensis (Lour.) Bail. were determined by capillary electrophoresis with wall-jet amperometric detection. The working electrode was a 500 μm diameter carbon disc electrode and the detection potential was +0.95 V (versus Ag/AgCl). Effects of several important factors, such as the running buffer and its corresponding pH and concentration, separation voltage, injection time were investigated to acquire the optimum conditions for separation of these four flavonoids. Baseline separation for the four flavonoids was obtained within 21 min in a 60 cm length capillary at a separation voltage of 15 kV with a 60 mmoL/L Na2B4O7-120 mmoL/L NaH2PO4 buffer (pH 8.8) as running buffer. The relationship between peak currents and analyte concentrations was linear over about two orders of magnitude with detection limits (defined as S/N = 3) ranging from 0.02 to 0.05 μg/mL for all analytes. This method was applied for the determination of the above four flavonoids in H. cordata Thunb. and S. chinensis (Lour.) Bail. with simple extraction procedures, and the assay results were satisfactory.  相似文献   

13.
Yanqing Wang  Changgang Huang  Li He 《Talanta》2009,77(5):1667-1674
This paper describes the enhanced separation of lomefloxacin, sparfloxacin, fleroxacin, norfloxacin, ofloxacin, gatifloxacin and pazufloxacin by capillary zone electrophoresis (CZE) using silica nanoparticles (SiNPs) as running buffer additive. The impact of SiNPs concentration on the resolution and selectivity of separation was investigated and a given value of SiNPs was finally chosen under the optimum conditions. The addition of the SiNPs to the running buffer enabled electroosmotic flow (EOF) decrease and permitted full interaction between SiNPs and analytes. The influence of separation voltage, pH and buffer concentration on the separation in the presence of SiNPs was examined. Interactions between drugs and nanoparticles during the separation are discussed; the determination of interaction constants is also achieved. A good resolution of seven quinolones was obtained within 15 min in a 50 cm effective length fused-silica capillary at a separation voltage of +10 kV in a 12 mM disodium tetraborate-phosphate buffer (pH 9.08) containing 5.2 μg mL−1 SiNPs.  相似文献   

14.
In this work, a method based on capillary electrophoresis with amperometric detection and far infrared-assisted extraction has been developed for the determination of rutin, gentisic acid, and quercetin in the leaves of Lycium barbarum Linn. The effects of detection potential, irradiation time, and the voltage applied on the infrared generator were investigated to acquire the optimum analysis conditions. The detection electrode was a 300-μm-diameter carbon disc electrode at a detection potential of +0.90 V. The three analytes could be well separated within 12 min in a 40 cm length fused-silica capillary at a separation voltage of 12 kV in a 50 mM borate buffer (pH 9.2). The relation between peak current and analyte concentration was linear over about 3 orders of magnitude with the detection limits (S/N = 3) of 0.31, 0.48, and 0.78 μM for rutin, gentisic acid, and quercetin, respectively. The proposed method has been applied to determine the three bioactive constituents in real plant samples.  相似文献   

15.
In this paper, a simple, effective and green capillary electrophoresis separation and detection method was developed for the quantification of underivatized amino acids (dl ‐phenylalanine; dl ‐tryptophan) using β‐Cyclodextrin and chiral ionic liquid ([TBA] [l ‐ASP]) as selectors. Separation parameters such as buffer concentrations, pH, β‐CD and chiral ionic liquid concentrations and separation voltage were investigated for the enantioseparation in order to achieve the maximum possible resolution. A good separation was achieved in a background electrolyte composed of 15 mm sodium tetraborate, 5 mm β‐CD and 4 mm chiral ionic liquid at pH 9.5, and an applied voltage of 10 kV. Under optimum conditions, linearity was achieved within concentration ranges from 0.08 to 10 µg/mL for the analytes with correlation coefficients from 0.9956 to 0.9998, and the analytes were separated in less than 6 min with efficiencies up to 970,000 plates/m. The proposed method was successfully applied to the determination of amino acid enantiomers in compound amino acids injections, such as 18AA‐I, 18AA‐II and 3AA. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Two different families of compounds, i.e., phenolic and amino acids have been separated by capillary electrophoresis using a physically adsorbed polymer as capillary coating. The polymer used was N,N-dimethylacrylamide-ethylpyrrolidine methacrylate (DMA-EpyM) and it provided an stable coating by only flushing the capillary with a DMA-EpyM aqueous solution for 2 min between runs. The usefulness of this procedure has been demonstrated through the fast analysis of different families of solutes. Two different detection systems, diode-array detector and laser-induced fluorescence, have been used to determine phenolic acids and derivatized amino acids with fluorescein isothiocyanate, respectively. The main factors affecting reversal of electroosmotic flow (EOF) such as pH, type and concentration of buffer, and concentration and influence of organic solvents, as well as all the instrumental conditions were studied and optimized for both families of compounds.  相似文献   

17.
This work presents an high-performance liquid chromatography method for the determination of amino acids after precolumn derivatization with 4-chloro-3,5-dinitrobenzotrifluoride (CNBF) which can readily react with both primary and secondary amines. The precolumn derivatization conditions, including the CNBF concentration, reaction pH, temperature and reaction time were investigated for method optimization. In pH 9.0 borate buffer, the reaction of amino acids with CNBF was carried out at 60 °C for 30 min, the optimized concentration of CNBF was 70 mmol L−1 and the molar ratio of amino acids to CNBF was 1:5.25. The chromatographic separation of 19 amino acids derivatives was performed on a Kromasil ODS C18 column (250 mm × 4.6 mm, 5 μm) with good reproducibility, and ultraviolet detection was applied at 260 nm. The mobile phase was a mixture of phase A (acetonitrile) and phase B (acetate buffer, acetonitrile, triethylamine; 82.8:17:0.2, pH 4.9), and the flow rate was 0.4 mL min−1. The separation of all the labeled amino acids was achieved within 45 min at room temperature by gradient elution mode. The method linearity, calculated for each amino acid, had a correlation coefficient higher than 0.9979, in concentrations ranging from 9.60 to 3330.00 μmol L−1. The detection limits of amino acids were 2.40-6.50 μmol L−1, at a signal-to-noise ratio of 3. The proposed method was applied for the determination of amino acids in beer with recoveries of 97.0-103.9% and relative standard deviations of 2.62-4.22%, respectively. This method showed good accuracy and repeatability that can be used for the quantification of amino acids in real samples.  相似文献   

18.
A family of 6-mono(3-alkylimidazolium)-β-cyclodextrins with one primary hydroxyl group replaced by an alkylimidazolium cation has been developed. The effect of alkyl substitutents on the enantioresolution ability of these single-isomer cyclodextrins towards dansyl amino acids has been studied by capillary electrophoresis. Systematical investigations on the effect of buffer pH and selector concentration on the enatioseparation show that chiral selectors with a shorter alkyl chain (R = CnH2n+1, n ≤ 4) presented more powerful chiral recognition ability. These newly introduced single-isomer β-cyclodextrin derivatives proved to be effective chiral selectors for most selected dansyl amino acids at low buffer pH (e.g. pH 5.0) with selector concentration no less than 3 mM. The apparent complex stability constants between alkylimidazolium β-CDs and dansyl amino acids were also theoretically determined by using the mobility difference model proposed by Wren and Rowe. The side alkyl chains from both dansyl amino acids and alkylimidazolium β-CDs displayed significant effect on the apparent complex stability constants. Both the optimum selector concentrations calculated according to the model, however, were much lower than the experimental values giving the maximum chiral resolution of enantiomers.  相似文献   

19.
Capillary electrophoresis (CE) coupled with fiber-optic light-emitting diode-induced fluorescence detection has been developed for the separation of tyrosine (Tyr) enantiomers. R(−)-4-(3-isothiocyanatopyrrolidin-1-yl)-7-(N,N-dimethylaminosulfonyl)-2,1,3-benzoxadiazole was used as a chiral fluorescence tagged reagent for derivatization of Tyr. The effect of pH, running buffer concentration and applied voltage on enantioselectivity has been investigated. The optimum CE conditions are 15 mmol/L borate running buffer (pH 10.5) and 14-kV applied voltage. Good reproducibility was obtained with coefficient of variation (n = 7) of migration time and peak area less than 0.2 and 2.0%, respectively. The limits of detection of d- and l-Tyr derivatives were 2.9 and 2.2 μmol/L (S/N = 3), respectively. The proposed method has been successfully applied to the determination of Tyr in a commercial amino acid oral solution.  相似文献   

20.
周建忠  廖杰  钱小红  董芳霆 《色谱》1997,15(2):159-160
建立了用毛细管胶束电动色谱法(MEKC)分离19种PTH氨基酸的方法,并探讨了电压、pH值、温度、胶束浓度对氨基酸迁移时间的影响。方法具有速度快、灵敏度高、样品用量少的优点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号