首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Capillary zone electrophoresis was used to separate arsenite, arsenate, dimethylarsinic and diphenylarsinic acid, methanearsonic acid, phenyl- and p-aminophenyl arsonic acid, phenylarsineoxide and phenarsazinic acid. Anionic and uncharged species were separated in a fused silica capillary with on-column UV detection at 200 nm. A 15 mM phosphate solution adjusted to pH 6.5 containing 10 mM sodium dodecylsulfonate served as background electrolyte. The influence of pH and applied voltage on separation efficiency, as well as the feasibility of identification of arsenic compounds in spiked urine, were investigated. Received: 18 March 1998 / Revised: 25 May 1998 / Accepted: 30 May 1998  相似文献   

2.
Capillary zone electrophoresis was used to separate arsenite, arsenate, dimethylarsinic and diphenylarsinic acid, methanearsonic acid, phenyl- and p-aminophenyl arsonic acid, phenylarsineoxide and phenarsazinic acid. Anionic and uncharged species were separated in a fused silica capillary with on-column UV detection at 200 nm. A 15 mM phosphate solution adjusted to pH 6.5 containing 10 mM sodium dodecylsulfonate served as background electrolyte. The influence of pH and applied voltage on separation efficiency, as well as the feasibility of identification of arsenic compounds in spiked urine, were investigated. Received: 18 March 1998 / Revised: 25 May 1998 / Accepted: 30 May 1998  相似文献   

3.
Iqbal Z  Bjorklund RB 《Talanta》2011,84(4):224-1123
Analysis of water and sand samples was done by reflectance measurements using a mobile phone. The phone's screen served as light source and front view camera as detector. Reflected intensities for white, red, green and blue colors were used to do principal component analysis for classification of several compounds and their concentrations in water. Analyses of colored solutions and colorimetric reactions based on widely available chemicals were performed. Classification of iron(III), chromium(VI) and sodium salt of humic acid was observed using reflected intensities from blue and green light for concentrations 2-10 mg/l. Addition of complex forming sodium salt of ethylenediaminetetraacidic acid enabled the discrimination of Cu(II) ions in the 2-10 mg/l concentration range based on reflection of red light. An alternate method using test strips for copper solutions with the phone as reader also demonstrated a detection limit of 2 mg/l. Analysis of As(III) from 25 to 400 μg/l based on reflection of red light was performed utilizing the bleaching reaction of tincture of iodine containing starch. Enhanced sensitivity to low concentrations of arsenic was obtained by including reflected intensities from white light in the analysis. Model colored sand samples representing discoloration caused by the presence of arsenic in groundwater were analyzed as a complementary method for arsenic detection.  相似文献   

4.
A simple, rapid and robust analytical method for determining diphenylarsinic acid in human and environmental samples was developed based on a combination of hydrophilic polymer‐based gel‐permeation high‐performance liquid chromatography (HPLC) and inductively coupled plasma mass spectrometry (ICP‐MS). Hair and nail samples were digested with alkali, and liberated diphenylarsinic acid (derivative) was extracted with diethyl ether, redissolved in water and injected for HPLC–ICP‐MS analysis. Human urine, groundwater and water extracts from soils were injected for HPLC–ICP‐MS directly after filtration. Using the method, diphenylarsinic acid in a solution was quantified in 7 min duration for an analysis with a detection limit of sub‐nanograms per milliliter. The method has been applied to groundwater arsenic pollution recently uncovered in Japan. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
The high toxicity of diphenylarsinic acid, found in ground water and well water as a probable consequence of the inappropriate disposal of warfare agents, prompted us to study the reaction, monitored by 1H and 13C NMR spectroscopy, of the compound and its monophenyl analogue, phenylarsonic acid, with cellular thiols as represented, in particular, by glutathione. Glutathione reduced the phenylarsenic acids to trivalent forms and complexed them: diphenylarsinic acid to a monoglutathione adduct and phenylarsonic acid to a diglutathione adduct. The complexes were characterized by 1H and 13C NMR spectroscopy and mass spectrometry. The NMR spectra showed the diastereotopic nature of the two phenyl groups in the diphenylarsinic acid-glutathione compound, and of the two glutathione residues in the phenylarsonic acid-diglutathione complex. The stereochemistry of thiol compounds of phenylarsonic acid was further explored by 1H and 13C NMR spectroscopy of the L-cysteine complex. The diphenylarsinic acid-glutathione complex was stable below pH 12 but at higher pH the complex dissociated into diphenylarsinous acid and reduced glutathione. The released diphenylarsinous acid then oxidized to diphenylarsinic acid with a half-life of about 7 h at pH 13 and at room temperature.  相似文献   

6.
Plants and soil collected above an ore vein in Gasen (Austria) were investigated for total arsenic concentrations by inductively coupled plasma mass spectrometry (ICP‐MS). Total arsenic concentrations in all samples were higher than those usually found at non‐contaminated sites. The arsenic concentration in the soil ranged from ∼700 to ∼4000 mg kg−1 dry mass. Arsenic concentrations in plant samples ranged from ∼0.5 to 6 mg kg−1 dry mass and varied with plant species and plant part. Examination of plant and soil extracts by high‐performance liquid chromatography–ICP‐MS revealed that only small amounts of arsenic (<1%) could be extracted from the soil and the main part of the extractable arsenic from soil was inorganic arsenic, dominated by arsenate. Trimethylarsine oxide and arsenobetaine were also detected as minor compounds in soil. The extracts of the plants (Trifolium pratense, Dactylis glomerata, and Plantago lanceolata) contained arsenate, arsenite, methylarsonic acid, dimethylarsinic acid, trimethylarsine oxide, the tetramethylarsonium ion, arsenobetaine, and arsenocholine (2.5–12% extraction efficiency). The arsenic compounds and their concentrations differed with plant species. The extracts of D. glomerata and P. lanceolata contained mainly inorganic arsenic compounds typical of most other plants. T. pratense, on the other hand, contained mainly organic arsenicals and the major compound was methylarsonic acid. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
Arsenic circulation in an arsenic-rich freshwater ecosystem was elucidated to detect arsenic species in the river water and in biological samples living in the freshwater environment. Water-soluble arsenic compounds in biological samples were extracted with 70% methanol. Samples containing arsenic compounds in the extracts were treated with 2 mol dm3 of sodium hydroxide and reduced with sodium borohydride. The detection of arsenic species was accomplished using a hydride generation/cold trap/cryofocus/gas chromatography-mass spectrometry (HG/CT/CF/GC-MS) system. The major arsenic species in the river water, freshwater algae and fish are inorganic arsenic, dimethylarsenic and trimethylarsenic compounds, respectively. Trimethylarsenic compounds are also detected in aquatic macro-invertebrates. The freshwater unicellular alga Chlorella vulgaris, in a growth medium containing arsenate, accumulated arsenic and converted it to a dimethylarsenic compound. The water flea Daphnia magna, which was fed on arsenic-containing algae, converted it to a trimethylarsenic species. © 1997 by John Wiley & Sons, Ltd.  相似文献   

8.
Packed capillary column liquid chromatography (LC)–electrospray mass spectrometry (ESI-MS) was used for the first time to detect and identify four common organophosphorus chemical warfare agents in aqueous samples. Aqueous samples containing the organophosphorus chemical warfare agents in the 0.01 to 0.1 mg/ml range were analyzed directly by packed capillary LC–ESI-MS with the chemical warfare agents and several minor related impurities being well resolved under acetonitrile–water gradient elution conditions. The ESI-MS data for isopropyl methylphosphonofluoridate (sarin or GB), O-ethyl N,N-dimethylphosphoramidocyanidate (tabun or GA), cyclohexyl methylphosphonofluoridate (GF) and pinacolyl methylphosphonofluoridate (soman or GD) were acquired with a sampling cone voltage setting that promoted collisionally activated dissociation, and resulted in the acquisition of informative mass spectra containing both molecular and product ion information. The developed method appears to be an attractive alternative to GC–MS for the analysis of aqueous samples containing organophosphorus chemical warfare agents and their hydrolysis products, since they may be analyzed directly without the need for additional sample handling.  相似文献   

9.
CZE for the speciation of arsenic in aqueous soil extracts   总被引:2,自引:0,他引:2  
We developed two separation methods using CZE with UV detection for the determination of the most common inorganic and methylated arsenic species and some phenylarsenic compounds. Based on the separation method for anions using hydrodynamic sample injection the detection limits were 0.52, 0.25, 0.27, 0.12, 0.37, 0.6, 0.6, 1.2 and 1.0 mg As/L for phenylarsine oxide (PAO), p-aminophenylarsonic acid (p-APAA), o-aminophenylarsonic (o-APAA), phenylarsonic acid (PAA), 4-hydroxy-3-nitrobenzenearsonic acid (roxarsone), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenite or arsenious acid (As(III)) and arsenate (As(V)), respectively. These detection limits were improved by large-volume sample stacking with polarity switching to 32, 28, 14, 42, 22, 27, 26 and 27 microg As/L for p-APAA, o-APAA, PAA, roxarsone, MMA, DMA, As(III) and As(V), respectively. We have applied both methods to the analysis of the arsenic species distribution in aqueous soil extracts. The identification of the arsenic species was validated by means of both standard addition and comparison with standard UV spectra. The comparison of the arsenic species concentrations in the extracts determined by CZE with the total arsenic concentrations measured by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) indicated that CZE is suited for the speciation of arsenic in environmental samples with a high arsenic content. The extraction yield of phenylarsenic compounds from soil was derived from the arsenic concentrations of the aqueous soil extracts and the total arsenic content of the soil determined by ICP-AES after microwave digestion. We found that 6-32% of the total amount of arsenic in the soil was extractable by a one-step extraction with water in dependence on the type of arsenic species.  相似文献   

10.
A method of high performance liquid chromatography with a Hamilton PRP‐X100 ion‐exchange column (250 × 4.1 mm id, 10 μm) coupled to inductively coupled plasma mass spectrometry was employed to generate a full concentration–time profile of arsenic speciation after oral administration. The results exhibited good linearity and revealed that, in the pills, the average arsenic concentration was 10105.4 ± 380.7 mg/kg, and in the water extraction solution, the inorganic As(III) and As(V) concentrations were 220.1 ± 12.6 and 45.5 ± 2.3 mg/kg, respectively. No trace of monomethyl arsenic acid was detected in any of the plasma samples. We then successfully applied the established methodology to examine the pharmacokinetics of arsenic speciation. The resulting data revealed that, after oral administration in rats, the plasma concentration of each arsenic species reached Cmax shortly after initial dosing, and that the distribution and elimination of As(V) was faster than that of As(III) and dimethyl arsenic acid. Additionally, the t1/2 values of As(V), As(III), and dimethyl arsenic acid were 3.4 ± 1.6, 14.3 ± 4.0, and 19.9 ± 1.6 h, respectively. This study provides references for the determination of arsenic speciation in mineral‐containing medicines and could serve as a useful tool in measuring the true toxicity in traditional medicines that contain them.  相似文献   

11.
A new method has been developed to allow the determination of the chlorate, chloride and perchlorate anions in inorganic explosive residues to be made using isotachophoresis (ITP). To enable a good separation of these species to be achieved the method involves the use of two complexing agents. Indium(III) is used to allow the determination of chloride whilst using nitrate as the leading ion and alpha-cyclodextrin is used to allow the separation of chlorate and perchlorate. Separations were carried out using a miniaturised poly(methyl methacrylate) (PMMA) separation device. The method was applied to analysing both model samples and actual inorganic explosive containing residue samples. Successful determinations of these samples were achieved with no interference from other anions typically found in inorganic explosive residues. Limits of detection (LOD) for the species of interest were calculated to be 0.80 mg l(-1) for chloride, 1.75 mg l(-1) for chlorate and 1.40 mg l(-1) for perchlorate.  相似文献   

12.
A packed capillary liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) method was developed for the identification of chemical warfare agents, their degradation products and related compounds in synthetic tabun samples and in soil samples collected from a former mustard storage site. A number of organophosphorus and organosulfur compounds that had not been previously characterized were identified, based on acquired high-resolution ESI-MS data. At lower sampling cone voltages, the ESI mass spectra were dominated by protonated, sodiated and protonated acetonitrile adducts and/or their dimers that could be used to confirm the molecular mass of each compound. Structural information was obtained by inducing product ion formation in the ESI interface at higher sampling cone voltages. Representative ESI-MS mass spectra for previously uncharacterized compounds were incorporated into a database as part of an on-going effort in chemical warfare agent detection and identification. The same samples were also analyzed by capillary column gas chromatography (GC)-MS in order to compare an established method with LC-ESI-MS for chemical warfare agent identification. Analysis times and full-scanning sensitivities were similar for both methods, with differences being associated with sample matrix, ease of ionization and compound volatility. GC-MS would be preferred for organic extracts and must be used for the determination of mustard and relatively non-polar organosulfur degradation products, including 1,4- thioxane and 1,4-dithiane, as these compounds do not ionize during ESI-MS. Diols, formed following hydrolysis of mustard and longer-chain sulfur vesicants, may be analyzed using both methods with LC-ESI-MS providing improved chromatographic peak shape. Aqueous samples and extracts would, typically, be analyzed by LC-ESI-MS, since these analyses may be conducted directly without the need for additional sample handling and/or derivatization associated with GC-MS determinations. Organophosphorus compounds, including chemical warfare agents, related compounds and lower volatility hydrolysis products may all be determined during a single LC-ESI- MS analysis. Derivatization of chemical warfare agent hydrolysis products and other compounds with hydroxyl substitution would be required prior to GC-MS analysis, giving LC-ESI-MS a definite advantage over GC-MS for the analysis of samples containing chemical warfare agents and/or their hydrolysis products.  相似文献   

13.
A method in combination with derivatization-supercritical fluid extraction(SFE) and gas chromatography(GC) for the speciation and quantitative determination of dimethylarsinate(DMA), monomethylarsonate(MMA) and inorganic arsenic in solid matrices was investigated. Thioglycolic acid methyl ester(TGM) and thioglycolic acid ethyl ester(TGE) were evaluated as derivatization reagents. The effects of pressure, temperature, flow rate of supercritical CO_2, extraction time, modifier and microemulsion on the efficiency of extraction were systematically investigated. The procedure was applied to the analysis of real soil and sediment samples. Results showed that TGE was more effective for arsenic speciation as a derivatization reagent. Modifying supercritical CO_2 with methanol can greatly improve the extraction efficiency. Further, the addition of microemulsion containing surfactant Triton X-100 can further enhance recoveries of arsenic species. The optimum extraction conditions were 100 ℃, 30 MPa, 10 min static and 25 min dynamic extraction with 5%(v/v) methanol, and surfactant modified supercritical CO_2. Detection limits in solid matrices were 0.15, 0.3 and 1.2 mg/kg for DMA, MMA and inorganic arsenic,respectively. The method was validated by the recovery data. The resulting method was fast, easy to perform and selective in the extraction and detection of various arsenic species in solid matrices.  相似文献   

14.
Hemmings MJ  Jones EA 《Talanta》1991,38(2):151-155
Arsenic(V) and arsenic(III) can be separated, by ion-exclusion chromatography, in solutions containing iron and sulphuric acid. Iron is removed by ion-exchange before the speciation of arsenic, with phosphoric acid as the eluent. The separated arsenic(V) and arsenic(III) are measured spectrophotometrically in the ultraviolet region at a wavelength of 195 mn. Arsenic(V) and arsenic(III) can be determined at concentrations > or = 3 mg/1. The relative standard deviations are 1.3% for arsenic(V) and 0.9% for arsenic(III), at the 10 mg/1. level. The time required for the separation of the inorganic arsenic species is 11 min.  相似文献   

15.
The determination of total arsenic and of arsenic compounds in biological and inorganic samples is a task frequently encountered by analysts. Several elecrochemical methods have been developed for the determination of total arsenic (generally after mineralization of the sample), arsenite, arsenate, methylarsonic acid and dimethylarsinic acid. The electrochemical behavior of several other organic arsenic compounds was also studied. This paper reviews these electrochemical methods, their application to environmental samples, and the problems encountered in the electrochemical determination of arsenic and arsenic compounds.  相似文献   

16.
A direct flow-injection atomic-absorption spectrometric (FIA-AAS) method for the assessment of inorganic arsenic compounds and their metabolites was developed and statistically evaluated by the estimation of the method evaluation function (MEF), which provides detailed information on the analytical performance of the method, i.e., the average combined uncertainty and the magnitude of potential systematic errors. The method evaluation study demonstrated that the use of standard addition was a necessity to obtain an acceptable method performance at low concentrations typical for low dose exposure. In contrast the use of calibration curves resulted in a method with reduced sensitivity and high systematic error. The developed method, using standard addition, had a limit of detection (2.9 microg/l.) sufficiently low for the determination of hydride-generating arsenic species in urine from non-exposed and low exposed persons. Organoarsenicals such as arsenobetaine and arsenocholine are not detected by this method. Hence, the contribution of these compounds derived from a diet containing seafood does not affect the monitoring of inorganic arsenic compounds after occupational or environmental exposure. The high capacity of the FIA-AAS system (three minutes per sample measured by standard addition) together with the low limit of detection makes this method suitable for biological monitoring of inorganic arsenic exposure even though standard addition is required.  相似文献   

17.
An online preconcentration technique by dynamic pH junction was studied to improve the detection limit for anionic arsenic compounds by CE. The main target compound is roxarsone, or 3-nitro-4-hydroxyphenylarsonic acid, which is being used as an animal feed additive. The other inorganic and organoarsenic compounds studied are the possible biotransformation products of roxarsone. The arsenic species were separated by a dynamic pH junction in a fused-silica capillary using 15 mM phosphate buffer (pH 10.6) as the BGE and 15 mM acetic acid as the sample matrix. CE with UV detection was monitored at a wavelength of 192 nm. The influence of buffer pH and concentration on dynamic pH junction were investigated. The arsenic species focusing resulted in LOD improvement by a factor of 100-800. The combined use of C18 and anion exchange SPE and dynamic pH junction to CE analysis of chicken litter and soils helps to increase the detection sensitivity. Recoveries of spiked samples ranged between 70 and 72%.  相似文献   

18.
采用阴(Hamilton PRP-X100柱)阳(Dionex Ionpac CS-10柱)离子交换色谱-电感耦合等离子体质谱联用技术,分别以pH 10.3的20 mmol/L NH4HCO3和pH 2.0的5 mmol/L吡啶溶液为流动相,建立了As(Ⅲ)、As(Ⅴ)、一甲基砷酸(MMA)、二甲基砷酸(DMA)、砷甜菜碱AsB、砷糖PO4、砷糖OH、砷糖SO3、砷糖SO4砷形态的分析方法。采用微波消解法和超声溶剂提取法对不同海域10种紫菜和海带产品进行前处理,对As含量及其化学形态进行分析。实验表明,样品总砷的质量分数为1.7~38.7 mg/kg,样品萃取物中,As糖PO4和As糖OH为As的主要形态,其含量分别占可提取As的6.5%~67.7%和12.9%~86.2%,海带样品萃取物中还有As糖SO3和DMA被检测,其含量分别占可提取As的13.0%~52.1%和5.9%~17.4%。在紫菜和海带海藻类产品中,含As的化合物主要是毒性较低的有机砷。  相似文献   

19.
A coupling between column liquid chromatography (LC) and atomic fluorescence spectrometry was developed for arsenic speciation. After separation, the compounds are oxidised on-line by UV irradiation, volatilised by hydride-generation and carried to the detector by a stream of argon. A combination of anion-exchange and hydrophobic interactions in a single column (Dionex AS7) was found suitable for the simultaneous separation of organic and inorganic species. Twelve compounds (arsenite, arsenate, monomethylarsonic acid, dimethylarsinic acid, arsenobetaine, arsenocholine, trimethylarsine oxide, tetramethylarsonium ion and four arsenosugars) were separated using an acetate buffer and a nitric acid solution as mobile phases. Limits of detection are 4-22 pg. The technique was applied to three marine samples. Arsenobetaine was detected as the main species in all samples, with concentrations varying from 59 to 1947 ng(As) g(-1) of fresh mass.  相似文献   

20.
采用微波辅助提取-液相色谱-氢化物发生-原子荧光光谱法(LC-HG-AFS)联用技术分析了太湖沉积物中砷的形态[亚砷酸(As(III))、二甲基砷酸钠(DMA)、一甲基砷酸二钠(MMA)和砷酸As(V)]。测得沉积物中以无机砷为主,且以As(V)居多。选定以1mol/L的磷酸和0.1mol/L抗坏血酸为提取液,在微波辅助萃取(功率为60W,时间12min)下,萃取率达79.84%~91.57%,回收率在94.78%~107.6%之间。4种砷的形态在0~160μg/L之间时线性良好,检测限为0.6~2.3μg/L,相对标准偏差RSD为1.62%~2.20%。方法具有简便、快速、灵敏的特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号