首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ozone monitoring techniques utilize expensive instruments that are often large and heavy. These instruments are not easy to handle in the field, and their size also limits some sampling schemes, principally for indoor ozone determination. We have developed a lightweight, inexpensive, and sensitive method that offers flexibility to undertake measurements of ambient ozone in many environments, both indoor and outdoor. The method is based on the reaction of ozone with indigo blue dye. The indigo molecule contains 1 carbon double bond (C = C) that reacts with ozone and results in nearly colorless reaction products. During sample collection, 2 cellulose filters coated with 40 micro of 1.0 x 10(-3) M indigo blue were used. The determinations were done spectrophotometrically at 250 and 600 nm. The analytical parameters studied were sampling time and flow rate. Analytical curves were constructed with concentrations ranging from 37 to 123 parts per billion by volume (ppbv) of standard ozone, at 0.4 L/min and 15 min sampling time. The detection limits achieved were 6 and 9 ppbv, respectively, at 250 and 600 nm. Considering interferences, measurements made at 250 nm gave more reliable and specific values for ozone.  相似文献   

2.
A new simple method for determination of ozone in ambient air is presented. The reaction employed is based on the known ozonolysis of indigo dye. The indigotrisulfonate molecule contains one carbon–carbon double bond (C═C), which reacts with ozone and generates isatinsulfonates and sulfoanthranilate. The quantitatively formed sulfoanthranilate presents fluorescence (λex 245 nm, λem 400 nm). Ozone was collected using two cellulose filters coated with 40 μL of 1.0 × 10− 3 mol L− 1 of indigotrisulfonate. The analytical response was linear in the range 0–150 ppbv ozone, and a detection limit of 7 ppbv was achieved using a sampling time of 15 min and an optimum sampling air flow rate of 0.4 L min− 1. There was no interference from sulfur dioxide, formaldehyde or nitrogen dioxide. The ozonolysis mechanism and the reaction products are discussed.  相似文献   

3.
Formaldehyde, acetaldehyde, ozone and nitrogen dioxide in ambient air are simultaneously collected on silica gel cartridges coated with 1-methyl-1-(2,4-dinitrophenyl)hydrazine (MDNPH), where the two aldehydes are derivatized to their respective hydrazones, while the two oxidants are converted into N-methyl-2,4-dinitroaniline (MDNA). The three products are then separated and quantified by HPLC with UV detection at 360 nm. The stoichiometric factors of the MDNPH reactions with O3 and NO2 in laboratory tests correspond to 2.0 +/- 0.1 moles of MDNA per mole of O(x) (O3 + NO2). The limits of detection (LOD) are 0.7 ppbv HCHO, 0.8 ppbv CH3CHO and 1.6 ppbv O(x) for 30 L (1 h) air sampled. The sampling performance is insensitive to relative humidities encountered in real atmospheres. When compared with Sep-Pak DNPH silica cartridges as well as with ozone photometric and nitrogen dioxide chemiluminescent analyzers, the proposed chromatographic method demonstrates a very good accuracy (12% for HCHO, 14% for CH3CHO and 7% for O(x), on the average) under field sampling conditions at concentrations lower than 3 and 1 ppbv, for HCHO and CH3CHO, respectively and ranging from 28 to 62 ppbv for O(x).  相似文献   

4.
A correction method for the determination of atmospheric monohydroxylated derivatives of 1-nitropyrene (hydroxy-1-nitropyrenes, OHNPs) based on their degradation rates during high volume air sampling was established. OHNPs adsorbed directly on a quartz fibre filter (QFF) or on airborne particles collected on a QFF were exposed to ambient air passively or actively in a high volume air sampling system. The influence of ozone flux and exposure time on the degree of degradation of OHNPs was investigated. Up to 50% of OHNPs degraded over 1 h of exposure to ambient air containing ~60 ppbv of ozone in the active system. The degradation rate constants of OHNPs were found to correlate with the number of ozone molecules passing through the QFF in a unit time (NO3) during high volume air sampling. The chemical loss of OHNPs under high volume air sampling conditions was successfully evaluated by the exposure time and the pseudo-first-order rate constant for OHNP degradation estimated from the correlation with NO3. Concentrations of 3-, 6-, and 8-hydroxy-1-nitropyrenes in airborne particles collected in Osaka, Japan were determined using the established correction method.  相似文献   

5.
Formaldehyde, HCHO, is one of the important causal agents of sick-building syndrome. It is also an important product of ambient air photochemistry. We report here a portable instrument capable of a 0.08 ppbv limit of detection (LOD) and a time resolution of 5 min that is useful for both indoor and ambient air applications. The detection is based on efficient gas collection and chromogenic reaction with 3-methyl-2-benzothiazolone hydrazone (MBTH) through a pair of alternately sampling small-bore porous-membrane tube diffusion scrubbers (DS). The chemistry is well established, requires no special reagent preparation or elevated reaction temperatures and permits the use of inexpensive light emitting diode (LED)-based detectors without need for long path cells. Stopped flow alternate sampling allows an HCHO collection performance, an order of magnitude better than any previous system with high throughput and high sensitivity. Results for indoor and ambient air analyses are presented.  相似文献   

6.
Summary An improved analytical procedure has been developed for the detection of formaldehyde, acetaldehyde, acetone and other volatile carbonyls in clean air. For sampling, 2,4-dinitrophenyl-hydrazine (DNPH) coated silica gel cartridges were used. DNPH reacts with carbonyls and forms carbonyl hydrazones which are extracted with acetonitrile and subsequently separated by reversed phase HPLC. Sampling flow rates up to 3.5 l/min were tested. The quantification limit of the complete sampling and analytical procedure is 60 ng carbonyl which corresponds to a mixing ratio of 1 ppbv HCHO in a 45 l air sample taken during a sampling time of 13 min. Carbonyl mixing ratios down to 0.1 ppbv can be determined. The collection efficiency and the elution recovery range between 96 and 100%; the precision is ±5% for HCHO and ±4% for CH3CHO at mixing ratios of 1 ppbv. This technique can also be applied for the determination of aldehydes and ketones in the aqueous phase, e.g. cloud and fog water. In this case, carbonyls were converted to hydrazones simply by mixing the aqueous sample with an acidified DNPH solution. After 40 min reaction time, the hydrazones were analysed by HPLC. The detection limit was 0.2 mol HCHO/l. Possible interference caused by ozone and NO2 was eliminated by using KI filters connected in series with the DNPH-coated cartridges. The analytical procedure was tested at a mountain measuring station and proved to be a suitable method for monitoring carbonyl compounds in clean air.  相似文献   

7.
A new ionic liquid 1-octyl-3,5-dimethylpyridinium iodide ([O35LUT]+[I]) was synthesized and utilized as coating for an ozone denuder device based on a high-volume aerosol sampler (30 m3 h−1). Particle transmission of the denuder was studied, and over 99% of particles ranging from 10 to 2,500 nm were transmitted. The device, containing 4.66 g of ionic liquid, was used outdoors, under dry and damp atmospheric conditions. In order to expose the device to an average concentration of 120 ppbv (240 μg m−3) of ozone in air, an additional production of ozone was directly injected into the denuder. Under these conditions, over 97% of ozone was removed for approximately 120 h (5 days). Therefore, iodide-based ionic liquids can be used as a new alternative to conventional denuder coatings in order to reduce artifacts occurring during sampling of particulate matter. Future applications are not limited to ozone removal for specific aerosol sampling methods.  相似文献   

8.
A denuder sampler has been evaluated for a mixture of three gaseous diisocyanates, i.e. toluene diisocyanate (TDI), hexamethylene diisocyanate (HDI) and isophorone diisocyanate (IPDI). Sampling was performed at a total concentration of diisocyanates close to the Swedish occupational exposure limit (OEL), which is 10 ppbv (69-92 microg m(-3)), for a 5-min period. The denuder tube was coated with a chemosorptive stationary phase consisting of SE-30 (polydimethylsiloxane) and the derivatising reagent dibutylamine (DBA). It was shown that the denuder has a collection efficiency for HDI and IPDI comparable to that of an impinger method, while sampling of TDI resulted in an 8% lower concentration. Both short-term (15 min) and long-term (8 h) sampling periods were shown to yield reproducible results. For 8-h measurements, a sampling flow rate of 5 mL min(-1) was shown to be suitable for the investigated concentration range, i.e. 10-100 ppbv (69-921 microg m(-3)). A flow rate of 25 mL min(-1) or higher resulted in breakthrough after 8 h due to chromatography of the compounds in the adsorbent. The limit of detection (LOD) for the air sampling method is nearly 500 times lower than the OEL. The denuder tubes can be prepared at least 10 days prior to sampling without degradation of performance. Furthermore, they can be stored up to 6 days in a freezer after sampling without significant loss of analytes.  相似文献   

9.
An SPME method was developed for sampling gaseous 2,4-toluene diisocyanate (2,4-TDI) involving derivatisation of the isocyanate by reacting with dibutylamine (DBA). The TDI-DBA derivative thus formed was determined by LC-MS-MS utilising atmospheric pressure chemical ionisation (APCI). As a first step, DBA was loaded onto a poly(dimethylsiloxane)/divinylbenzene (PDMS-DVB) fibre coating by direct vapour-phase extraction of a highly concentrated diethyl ether solution of DBA. The DBA-loaded fibre was then exposed to an artificially generated atmosphere of gaseous 2,4-TDI. The linearity of the method ranged from 52.8 to 3100 microg m(-3) (6.8 to 400 ppbv) with a sampling time of 60 min. The proposed method has been applied to 2,4-TDI determination in an artificially generated dynamic standard atmosphere, yielding an approximate method detection limit (MDL) of 2 microg m(-3) (0.25 ppbv). This concentration is one twentieth of the Occupational Safety and Health Administration (OSHA) 8-hour time-weighted average (TWA) exposure limit. The sampler with the PDMS-DVB-DBA coating was found to be stable and retains the required amount of DBA for at least 10 days, an important feature for sampling systems with potential in-situ applications.  相似文献   

10.
Photosensitized heterogeneous chemistry of ozone on organic films   总被引:1,自引:0,他引:1  
The interactions of ozone with benzophenone and phenol solid films have been investigated under simulated atmospheric conditions with respect to relative humidity, pressure, temperature, and O3 concentration using a coated flow tube reactor. The steady-state reactive uptake coefficients (gammass) of ozone on benzophenone films ranged from below 10(-6) in dark conditions to approximately 4 x 10(-6) under UV-A irradiation and decreased with increasing O3 concentration in the range 28-320 ppbv. A similar trend was observed for the initial uptake coefficient (gammai) which varied from ca. 1.5 x 10(-6) in the dark to approximately 7 x 10(-6) under UV-A irradiation. The uptake coefficients under irradiation were strongly dependent on the relative humidity (from 5 to 70%), with their lowest values at high humidity (70% RH). The ozone uptakes for multilayer coverage turned out to be independent of the deposited mass of the organic compound. The benzophenone-phenol mixture also showed photoenhanced uptake with a larger steady-state uptake under visible irradiation, approximately 2.9 x 10(-6). Contact angle measurements showed an increase of the organic film hydrophobicity for the benzophenone-phenol mixture upon combined exposure to light and ozone. A linear dependence of the kinetic values on the photon flux has been demonstrated and when extrapolated to the solar spectral irradiance would lead to uptake coefficients of approximately 10(-5). UV-vis analysis and contact angle measurements of the organic film after irradiation and ozone exposure showed relevant changes only in the mixture, with an increase in the hydrophobic character of the film and the appearance of a new absorption band up to 450 nm.  相似文献   

11.
A new diffusive sampling method for the simultaneous determination of ozone and carbonyls in air has been developed. In this method, silica gel impregnated with a mixture of trans-1,2-bis(2-pyridyl)ethylene (2BPE) and 2,4-dinitrophenylhydrazine (DNPH) is used as the absorbent; further, a porous sintered polyethylene tube (PSP-diffusion filter), which acts as a diffusive membrane, and a small polypropylene syringe (PP-reservoir) for elution of the analytes from the absorbent are used. The carbonyls present in air react with DNPH in the absorbent to form hydrazone derivatives. Concurrently, ozone in the air reacts with 2BPE to form pyridine-2-aldehyde, which immediately reacts with DNPH to form a pyridine-2-aldehyde hydrazone derivative. All the hydrazones derived from airborne carbonyls, including pyridine-2-aldehyde (formed from ozone), are completely separated and analyzed by high-performance liquid chromatography. The sampling rates of ozone (44.6 mL min(-1)) and formaldehyde (72.0 mL min(-1)) are determined by comparison with the rates obtained in an active sampling method. The sampling rates of other carbonyl compounds are calculated from the respective molecular weights according to a rule based on Graham's law. The calculated sampling rates agree with the experimental values. The DSD-BPE/DNPH method is advantageous because it is simple and allows for the simultaneous analysis of ozone and carbonyls.  相似文献   

12.
An SPME method was developed for sampling gaseous 2,4-toluene diisocyanate (2,4-TDI) involving derivatisation of the isocyanate by reacting with dibutylamine (DBA). The TDI-DBA derivative thus formed was determined by LC–MS–MS utilising atmospheric pressure chemical ionisation (APCI). As a first step, DBA was loaded onto a poly(dimethylsiloxane)/divinylbenzene (PDMS–DVB) fibre coating by direct vapour-phase extraction of a highly concentrated diethyl ether solution of DBA. The DBA-loaded fibre was then exposed to an artificially generated atmosphere of gaseous 2,4-TDI. The linearity of the method ranged from 52.8 to 3100 μg m–3 (6.8 to 400 ppbv) with a sampling time of 60 min. The proposed method has been applied to 2,4-TDI determination in an artificially generated dynamic standard atmosphere, yielding an approximate method detection limit (MDL) of 2 μg m–3 (0.25 ppbv). This concentration is one twentieth of the Occupational Safety and Health Administration (OSHA) 8-hour time-weighted average (TWA) exposure limit. The sampler with the PDMS–DVB-DBA coating was found to be stable and retains the required amount of DBA for at least 10 days, an important feature for sampling systems with potential in-situ applications. Received: 2 October 2000 / Revised: 4 December 2000 / Accepted: 6 December 2000  相似文献   

13.
Influencing atmospheric OH radical budget and tropospheric ozone production,ambient formaldehyde(HCHO) is one of the key oxygenated volatile organic compounds(OVOCs).We present the variations on formaldehyde column densities in summertime in Beijing retrieved from ozone monitoring instrument(OMI) between 2005 and 2011.Satellite columns of HCHO correlated well with available ground-based measurements despite some noticeable differences.The orthogonal distance regression(ODR) method was used to estimate the ratio between satellite columns and ground-level concentrations,whereas ordinary least squares(OLS) method was used to fit the trend of ambient formaldehyde.The formaldehyde concentrations derived from HCHO columns were in the range of 7-12 ppbv and steadily increased at an approximate rate of 0.64 ppbv/yr(7.8%at 2005 level) with an uncertainty of 51%.VOC reactivity quantified by means of OH loss rates showed increasing contribution from formaldehyde and acetaldehyde, rising from 35%in 2005 to 40%in 2010,and decreasing contribution from anthropogenic VOCs,dropping from 49%in 2005 to 40%in 2010.More attention should be paid to understanding the net feedback of increasing formaldehyde to ozone formation potential.  相似文献   

14.
The highly odorous compound methanethiol, CH3SH, is commonly produced in biodegradation of biomass and industrial processes, and is classed as 2000 times more odorous than NH3. However, there is no simple analytical method for detecting low parts-per-billion in volume ratio (ppbv) levels of CH3SH. In this study, a micro gas analysis system (μGAS) was developed for continuous or near real time measurement of CH3SH at ppbv levels. In addition to a commercial fluorescence detector, a miniature high sensitivity fluorescence detector was developed using a novel micro-photomultiplier tube device. CH3SH was collected by absorption into an alkaline solution in a honeycomb-patterned microchannel scrubber and then mixed with the fluorescent reagent, 4-(N,N-dimethylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (DBD-F). Gaseous CH3SH was measured without serious interference from other sulfur compounds or amines. The limits of detection were 0.2 ppbv with the commercial detector and 0.3 ppbv with the miniature detector. CH3SH produced from a pulping process was monitored with the μGAS system and the data agreed well with those obtained by collection with a silica gel tube followed by thermal desorption–gas chromatography–mass spectrometry. The portable system with the miniature fluorescence detector was used to monitor CH3SH levels in near-real time in a stockyard and it was shown that the major odor component, CH3SH, presented and its concentration varied dynamically with time.  相似文献   

15.
An automated continuous measurement system for the monitoring of formaldehyde (HCHO) and acetaldehyde (CH3CHO) in the urban atmosphere was developed by using an annular diffusion scrubber in conjunction with a high-performance liquid chromatograph (HPLC). With this technique, atmospheric HCHO and CH3CHO were effectively collected by the annular diffusion scrubber which consists of a porous polytetrafluoroethylene (PTFE) tube disposed concentrically within a Pyrex-glass tube and a scrubbing solution. 2,4-Dinitrophenylhydrazine (DNPH) was selected as the scrubbing solution for collecting HCHO and CH3CHO, which are derivatized to 2,4-dinitrophenylhydrazone-formaldehyde (DNPH-HCHO) and 2,4-dinitrophenylhydrazone-acetaldehyde (DNPH-CH3CHO), respectively. An aliquot of the sample solution was automatically injected into an HPLC equipped with a semi-micro ODS column and a UV-VIS detector for separating and determining DNPH-HCHO and DNPH-CH3CHO. All the operations are sequenced by a programmable controller, and automated continuous measurements are performed with a typical temporal resolution of 1 h. The collection efficiencies of HCHO and CH3CHO were about 97% and 93%, respectively, at an air flow rate of 0.2 L/min. The lower detection limits (3σ of the blank hydrazones) of HCHO and CH3CHO were 0.05 ppbv and 0.10 ppbv, respectively, in the case of 12-L air sample volume. Analytical response of a standard solution of DNPH-HCHO and DNPH-CH3CHO by the HPLC during a 10-day continuous measurement was unchanged and the relative standard deviation (RSD) was < 1.0%. Interferences from O3 and NO2 were insignificant in this annular diffusion scrubber method. Both for HCHO and CH3CHO measurements, concentrations from this developed system well agreed with those measured by a DNPH Silica cartridge method.  相似文献   

16.
A method is described for the continuous monitoring of ethanol in ambient air. The system consists of a scrubber coil for enrichment of the analyte from air in an aqueous solution and a directly connected fluorescence detector. Because of using a reagent solution containing alcohol dehydrogenase (ADH) and nicotinamide adenine dinucleotide (NAD+) for absorption, ethanol can react directly with ADH and NAD+ during air sampling, producing NADH, which can be measured by fluorescence detection. The influence of reagent concentrations, gas flow rate and scrubber solution flow rate on the performance of the instrument was tested. Possible ozone interferences can be avoided by placing a KI coated filter in front of the scrubber inlet. The response time of the system was found to be 2.3 min and the detection limit about 1 ppbV. The applicability of the developed method was demonstrated during a field campaign in Brazil.  相似文献   

17.
Nakano N  Yamamoto A  Nagashima K 《Talanta》1996,43(3):459-463
A continuous monitoring system for vinyl chloride gas in air has been developed using an HCl monitoring tape and pyrolyzer consisting of a heater around a quartz tube. It is based on the color change of the tape by reaction with HCl gas produced by decomposition of vinyl chloride gas in the heated quartz tube. The conversion efficiency of vinyl chloride into HCl depends on the temperature of the pyrolyzer. The tape impregnated with a coloring solution that includes Metanil Yellow (pH indicator; pH 1.2-2.3, red-yellow), glycerin and methanol is a highly sensitive means of detecting HCl gas. When vinyl chloride gas was passed through the heated quartz tube (910 degrees C) and the HCl gas produced was passed through the tape, the color of the tape changed from yellow to red. The degree of color change was proportional to the concentration of vinyl chloride gas with a constant sampling time and flow rate. The degree of color change could be recorded by measuring the intensity of reflecting light (555 nm). This method is scarcely affected by other gases with the exception of chlorinated hydrocarbons such as trichloroethylene and chloroform or strong acids such as HCl gas. Reproducibility tests showed that the relative standard deviation of the relative intensity (n = 10) was 4.5 for 5 ppm vinyl chloride. The detection limit was 0.4 ppm for vinyl chloride with a sampling time of 40 s and a flow rate of 300 ml min (-1).  相似文献   

18.
Proton transfer reaction ion trap mass spectrometer   总被引:1,自引:0,他引:1  
Proton transfer reaction mass spectrometry is a relatively new field that has attracted a great deal of interest in the last few years. This technique uses H(3)O(+) as a chemical ionization (CI) reagent to measure volatile organic compounds (VOCs) in the parts per billion by volume (ppbv) to parts per trillion by volume (pptv) range. Mass spectra acquired with a proton transfer reaction mass spectrometer (PTR-MS) are simple because proton transfer chemical ionization is "soft" and results in little or no fragmentation. Unfortunately, peak identification can still be difficult due to isobaric interferences. A possible solution to this problem is to couple the PTR drift tube to an ion trap mass spectrometer (ITMS). The use of an ITMS is appealing because of its ability to perform MS/MS and possibly distinguish between isomers and other isobars. Additionally, the ITMS duty cycle is much higher than that of a linear quadrupole so faster data acquisition rates are possible that will allow for detection of multiple compounds. Here we present the first results from a proton transfer reaction ion trap mass spectrometer (PTR-ITMS). The aim of this study was to investigate ion injection and storage efficiency of a simple prototype instrument in order to estimate possible detection limits of a second-generation instrument. Using this prototype a detection limit of 100 ppbv was demonstrated. Modifications are suggested that will enable further reduction in detection limits to the low-ppbv to high-pptv range. Furthermore, the applicability of MS/MS in differentiating between isobaric species was determined. MS/MS spectra of the isobaric compounds methyl vinyl ketone (MVK) and methacrolein (MACR) are presented and show fragments of different mass making differentiation possible, even when a mixture of both species is present in the same sample. However, MS/MS spectra of acetone and propanal produce fragments with the same molecular masses but with different intensity ratios. This allows quantitative distinction only if one species is predominant. Fragmentation mechanisms are proposed to explain the results.  相似文献   

19.
An automated continuous measurement system for the monitoring of formaldehyde (HCHO) and acetaldehyde (CH3CHO) in the urban atmosphere was developed by using an annular diffusion scrubber in conjunction with a high-performance liquid chromatograph (HPLC). With this technique, atmospheric HCHO and CH3CHO were effectively collected by the annular diffusion scrubber which consists of a porous polytetrafluoroethylene (PTFE) tube disposed concentrically within a Pyrex-glass tube and a scrubbing solution. 2,4-Dinitrophenylhydrazine (DNPH) was selected as the scrubbing solution for collecting HCHO and CH3CHO, which are derivatized to 2,4-dinitrophenylhydrazone-formaldehyde (DNPH-HCHO) and 2,4-dinitrophenylhydrazone-acetaldehyde (DNPH-CH3CHO), respectively. An aliquot of the sample solution was automatically injected into an HPLC equipped with a semi-micro ODS column and a UV-VIS detector for separating and determining DNPH-HCHO and DNPH-CH3CHO. All the operations are sequenced by a programmable controller, and automated continuous measurements are performed with a typical temporal resolution of 1 h. The collection efficiencies of HCHO and CH3CHO were about 97% and 93%, respectively, at an air flow rate of 0.2 L/min. The lower detection limits (3σ of the blank hydrazones) of HCHO and CH3CHO were 0.05 ppbv and 0.10 ppbv, respectively, in the case of 12-L air sample volume. Analytical response of a standard solution of DNPH-HCHO and DNPH-CH3CHO by the HPLC during a 10-day continuous measurement was unchanged and the relative standard deviation (RSD) was < 1.0%. Interferences from O3 and NO2 were insignificant in this annular diffusion scrubber method. Both for HCHO and CH3CHO measurements, concentrations from this developed system well agreed with those measured by a DNPH Silica cartridge method. Received: 15 July 1998 / Revised: 5 October 1998 / Accepted: 7 October 1998  相似文献   

20.
The degradation of the dye indigo carmine in aqueous solution induced by two oxidative processes (H(2)O(2)/iodide and O(3)) was investigated. The reactions were monitored by electrospray ionization mass spectrometry in the negative ion mode, ESI(-)-MS, and the intermediates and oxidation products characterized by ESI(-)-MS/MS. Both oxidative systems showed to be highly efficient in removing the color of the dye aqueous solutions. In the ESI(-)-MS of the indigo carmine solution treated with H(2)O(2) and H(2)O(2)/iodide, the presence of the ions of m/z 210 (indigo carmine in its anionic form, 1), 216, 226, 235, and 244 was noticeable. The anion of m/z 235 was proposed to be the unprecedented hydroperoxide intermediate 2 formed in solution via an electrophilic attack by hydroxyl and hydroperoxyl radicals of the exocyclic C=C bond of 1. This intermediate was suggested to be rapidly converted into the anionic forms of 2,3-dioxo-1H-indole-5-sulfonic acid (3, m/z 226), 2-amino-alpha-oxo-5-sulfo-benzeneacetic acid (4, m/z 244), and 2-amino-5-sulfo-benzoic acid (5, m/z 216). In the ESI(-)-MS of the indigo carmine solution treated with O(3), two main anions were detected: m/z 216 (5) and 244 (4). Both products were proposed to be produced via an unstable ozonide intermediate. Other anions in this ESI(-) mass spectrum were attributed to be [4 - H + Na](-) of m/z 266, [4 - H](2-) of m/z 121.5, and [5 - H](2-) of m/z 107.5. ESI-MS/MS data were consistent with the proposed structures for the anionic products 2-5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号