首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The paper presents the application of pre-chromatographic derivatisation reaction of aminophosphonic acids (glyphosate and glufosinate) with phenylisothiocyanate in thin-layer chromatography (TLC). Silica gel as stationary phase and a mixture of methanol–water–diethyl ether (2:1:1, v/v/v) and ethanol–water–diethyl ether (4:1:2, v/v/v) were used as the mobile phase, respectively. Detection was performed by spraying TLC plates with a freshly prepared mixture of sodium azide (1%), starch solution (1% for glyphosate and 2% for glufosinate), and potassium iodide (1.0 × 10–2 mol L?1) adjusted to pH 6.0 and exposed to iodine vapour for 15 s. Both glyphosate and glufosinate as phenylthiocarbamates (PTC-derivatives) were visible as white spots against a violet background which were converted into chromatograms using TLSee software. The calibration curves for glyphosate and glufosinate were within the ranges of 8.45–84.5 ng and 1.98–79.2 ng per spot, respectively. The limits of detection and quantification for glyphosate were at a level of 4 and 8.45 ng per spot, and for glufosinate were 0.99 and 1.78 ng per spot, respectively. The proposed method was successfully used in the determination of aminophosphonic acids in spiked plants samples.  相似文献   

2.
离子色谱法检验尸体心血中草甘膦   总被引:3,自引:0,他引:3  
Wang Y  Wu B  Lian H  Shi C 《色谱》2012,30(4):419-422
建立了离子色谱检测人血中草甘膦的方法。血液样品使用乙腈沉淀蛋白质,离心后取上清液过Dionex OnGuard II RP 柱和Dionex OnGuard IIAg柱后,经IonPac AS-19阴离子色谱柱(25 mm×4 mm)分离,用KOH淋洗液自动发生器(EG)进行梯度淋洗,抑制器采用外加水模式,电导检测器检测。结果表明,草甘膦在10~100 mg/L范围内线性关系良好(相关系数r2=0.9999)。以信噪比(S/N)为3确定方法检出限为0.12 mg/L,以S/N=10确定方法定量限为0.39 mg/L;方法回收率为95.2%~109.1%,相对标准偏差(n=5)为1.2%~3.7%,检测实发案件中死者心血中草甘膦质量浓度为508 mg/L。该方法操作简便,结果准确,适用于血中草甘膦的定量检测,能快速为案件的侦破提供可靠的线索和依据,可满足公安工作的需要。  相似文献   

3.
A simple screening method was developed for the determination of glyphosate in water samples using a multi-pumping flow system. The proposed method is based on the reaction between glyphosate and p-dimethylaminocinnamaldehyde (p-DAC), in an acid medium where the reaction product can be measured spectrophotometrically at λ(max) = 495 nm. An experimental design methodology was used to optimize the measurement conditions. The proposed method was applied to the determination of glyphosate in water samples in a concentration range from 0.5 to 10 μg mL(-1). The limit of detection and quantification were 0.17 and 0.53 μg mL(-1), respectively. The results obtained (88.5 to 104.5%) in recovery studies for the determination of glyphosate in different water samples indicated good accuracy and no matrix effect for the developed method. Samples were also analyzed by a confirmatory HPLC method, and agreement within the two set of results was found.  相似文献   

4.
A graphite‐epoxy electrode (GE) modified with multiwalled carbon nanotubes (MWCNTs) and horseradish peroxidase ( GE/MWCNTs‐HRP) was used to build a glyphosate biosensor whose performance in aqueous solutions depends on the enzyme activity. For the biosensor preparation, MWCNTs were deposited onto the GE surface by electrophoresis using an oxidative treatment (H2SO4/HNO3) in presence of cetyl tributylammonium bromide (CTAB) as a cationic surfactant. The surfactant was further removed from the MWCNTs surface by dipping the electrode in an EtOH/HCl solution. The physical immobilization of HRP and therefore the glyphosate sensing capabilities was tested at pH 4 where the herbicide exhibits one only species. Circular dichroism studies suggested that the secondary structure of HRP changes as a result of its interaction with glyphosate and that this change is intensified by the combination of glyphosate and H2O2, which may explain the decrease of the enzyme catalytic activity with the increase of glyphosate concentration. The glyphosate quantification in doped‐maize kernels was highly reproducible and exhibits detection and quantification limits of 1.32 pM and 1.63 pM respectively. The biosensor is also characterized by a high recovery (100 %) and precision (coefficient of variation <1 %) and can be employed in presence of interfering substances such as chlorpyrifos (an organophosphate pesticide) and starch.  相似文献   

5.
A rapid and practical method for direct detection of the herbicides (glufosinate, bialaphos and glyphosate) in anion-exchange chromatography has been developed with integrated pulsed amperometric detection (IPAD). The electrochemical behavior of these herbicides showed catalytic currents based on the oxidation of amines in their structures. Waveform in IPAD was similar to that for amino acids, which exhibited adsorption/desorption catalytic features at gold electrode surface in alkaline solution. Under optimized conditions, detection limits (signal-to-noise ratio of 3) for glufosinate, bialaphos and glyphosate were 20, 65 and 50 ng ml(-1), respectively, with correlation coefficients of 0.995, 0.997 and 0.996 over concentration ranges of 0.1-45, 0.3-32 and 0.1-50 microg ml(-1), respectively. The relative standard deviations (n=5) were 1.7-3.0%. The present method was successfully applied to the determination of glyphosate in urine and serum.  相似文献   

6.
A method based on matrix solid-phase dispersion (MSPD) is described for the quantitative extraction of glyphosate and its major metabolite aminomethylphosphonic acid (AMPA) from tomato fruit. After application of 120 microL of HNO3 1M to the sample, the dispersion column was packed with 0.5 g of sample blended into 1 g of NH2-silica. Two aqueous fractions were obtained. First, AMPA was eluted from the column using deionized water (F1), and then a NaH2PO4 0.005 M solution was used for the elution of glyphosate (F2). Cleanup of F1 and F2 was made by ion exchange chromatography on a SAX anion exchange silica. Determination was done by HPLC with fluorescence detection after precolumn derivatization with 9-fluorenylmethylchloroformate (FMOC-Cl). Mean recoveries calculated at fortification levels of 0.5 microg/g for glyphosate and 0.4 microg/g for AMPA were 87% and 78%, respectively. The relative standard deviations (n=7) for the total procedure were 10% and 16%. Detection limits were 0.05 microg/g for glyphosate and 0.03 microg/g for AMPA.  相似文献   

7.
A simple and specific method using reversed‐phase liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC/ESI‐MS/MS) was investigated, which allowed the determination of residues of glyphosate and its metabolite, aminomethylphosphonic acid (AMPA), in soybean samples. An aqueous extraction with liquid‐liquid partition followed by protein precipitation was performed before the LC/MS/MS determination. The quantitation of glyphosate and AMPA was performed in positive and negative ESI mode, respectively, using the multiple reaction monitoring (MRM) mode with three transitions for each analyte to enhance the specificity of the method and avoid false positives. The methodology reported in this work is capable of detecting residues of glyphosate and AMPA in soybean samples with limits of quantification of 0.30 and 0.34 mg kg?1, respectively. This alternative method has throughput advantages such as simpler sample preparation and faster chromatographic analysis. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Hu Z  Ye M  Pan G  Zhang T  Zhong N 《色谱》2012,30(4):391-394
建立了一种抑制电导检测-离子色谱(IC)同时测定草甘膦生产工艺中母液里的草甘膦及其副产物、无机阴离子的方法。样品经过滤后直接进样,色谱条件: IonPac AS11-HC分离柱(250 mm×4 mm)和IonPac AG11-HC保护柱(50 mm×4 mm),在线淋洗液发生器KOH梯度淋洗,流速1.0 mL/min,采用抑制电导检测。草甘膦、甲基草甘膦、六甲基磷酰三胺(HMPA)、增甘膦、亚磷酸、磷酸、Cl~和SO2~4的线性范围分别为0.1~20 mg/L、0.1~20 mg/L、0.1~50 mg/L、0.25~50 mg/L、0.05~20 mg/L、0.2~50 mg/L、0.02~20 mg/L和0.05~50 mg/L,相关系数分别为0.9995、0.9993、0.9999、0.9998、0.9999、0.9985、0.9999和0.9980,加标回收率为93.7%~104.0%,相对标准偏差均小于2.5% (n=7),检出限(以信噪比(S/N)=3计)为0.002~0.025 mg/L。该方法用于草甘膦生产工艺中母液里草甘膦及其含磷副产物和无机阴离子的测定,结果令人满意。  相似文献   

9.
A method based on gas chromatography (GC) separation followed by ion trap tandem mass spectrometry detection in EI mode (ITD-MS/MS), using isotope dilution, was developed for the determination of ten native polybrominated diphenyl ethers (PBDEs) and four (13)C(12)-labeled congeners in biological (fat tissue and human serum) and food samples. The highest-mass fragment ions were used as precursor ions for those congeners with molecular ions with m/z values higher than the maximum of the instrument. In these cases (hepta-BDEs and (13)C(12)-hexa-BDEs) no fragmentation was achieved under the experimental conditions employed. Repeatability (lower than 9%) and reproducibility (lower than 13%), expressed as relative standard deviation (RSD, n = 3 and 4, respectively), were satisfactory. Similarly, the coefficient of variation (n = 4) of the isotopic ratio between the two most abundant product ions was lower than 10 and 6% for native and labeled congeners, respectively. To evaluate the feasibility of the method, the optimized isotope dilution GC/ITD-MS/MS method was used for the quantitation of selected PBDE congeners in different samples including adipose tissue, human serum and foodstuff samples, from three inter-laboratory comparative exercises, covering a wide range of concentrations. A solid-phase extraction procedure, previously developed for PCB determination in small-size bird serum samples, was successfully applied to quantification of PBDEs in 1 mL samples of human serum.  相似文献   

10.
An improved and easy to use liquid chromatography/tandem mass spectrometric (LC/MS/MS) method in human serum was developed for the quantification of clonidine (CLD), an alpha2-/alpha1-adrenoceptor agonist, used for analgo-sedation and the therapy of opioid withdrawal in pediatric patients. Sample preparation consisted of precipitation of serum proteins by adding acetonitrile and centrifugation of the sample subsequently. [(2)H4]Clonidine (CLD4) served as internal standard. Chromatographic separation of the supernatant was achieved using a 100mmx3mm, 5microm Thermo Electron BetaBasic C4 column with isocratic flow and elution consisting of 0.1% formic acid/acetonitrile (85/15, v/v) and a flow-rate of 350microl/min resulting in a column pressure of 280-420kPa. LC/MS/MS detection was performed by using a triple-stage quadrupole mass spectrometer (TSQ Quantum, Thermo Electron) working in selected reaction monitoring mode with positive electrospray ionization. The analyte was quantified in a single run within 5min. Linearity was demonstrated over the expected concentration range 0.15-50microg/l CLD. The lower limit of quantification (LLOQ) and the limit of detection were 0.1microg/l and 0.01microg/l, respectively. None of the drugs used concomitantly during analgesic therapy interfered in the assay in vitro. Intra-day precision expressed as RSD was 9.6% or less for CLD, while inter-day result was 10.0% or less for CLD. Intra-day and inter-day accuracy was within +/-4.9% and +/-1.8%, respectively. The method was validated according to the international guidelines of the International Conference on Harmonisation (ICH) and the US Food and Drugs Administration (FDA). The described method is suitable to analyse serum samples with very small volumes and sets the stage for pharmacokinetic studies in pediatric studies.  相似文献   

11.
The aim of this study was to develop a method for the determination of glyphosate, its metabolite aminomethylphosphonic acid (AMPA), and glufosinate ammonium residues in beebread samples, which could then be used to assess bees’ exposure to their residues. The complexity of beebread’s matrix, combined with the specific properties of glyphosate itself, required careful selection and optimization of each analysis step. The use of molecularly imprinted solid-phase extraction (MIP-SPE) by AFFINIMIP glyphosate as an initial clean-up step significantly eliminated matrix components and ensured an efficient derivatization step. Colorless beebread extracts were derivatized by the addition of 9-fluorenylmethyl chloroformate (FMOC-Cl). After derivatization, in order to remove FMOC-OH and residual borate buffer, a solid-phase extraction (SPE) clean-up step using Oasis HLB was carried out. Instrumental analysis was performed by liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS). The method was validated according to the SANTE/11312/2021 guideline at concentrations of 5, 10, and 100 µg/kg, and satisfactory recovery (trueness) values (76–111%) and precision (RSDr) ≤ 18% were obtained. The limit of quantification (LOQ) was 5 µg/kg for AMPA and glufosinate ammonium and 10 µg/kg for glyphosate. The method was positively verified by the international proficiency test. Analysis of beebread samples showed the method’s usefulness in practice. The developed method could be a reliable tool for the assessment of beebread’s contamination with residues of glyphosate, its metabolite AMPA, and glufosinate ammonium.  相似文献   

12.
Pereira-Filho ER  Arruda MA 《The Analyst》1999,124(12):1873-1877
A mechanised system for on-line slurry food sample digestion was developed and an off-line cobalt determination was performed. The stabilised slurry sample was introduced into an air carrier stream until reaching the digestion coils located inside a household microwave oven. Software written in Visual Basic 3.0 was developed to permit the transport of the slurry samples and the programming of the microwave oven and also the control of the mineralization valve. The proposed system was optimized for determination of cobalt in certified samples such as mussels, bovine liver and fish and also uncertified fish samples. The digestion parameters were established as 3 mol l-1 HNO3 for mussels, 3 mol l-1 HNO3 plus 0.16% v/v H2O2 for bovine liver and 12 mol l-1 HNO3 for fish employing maximum power for 5 min of microwave actuation. In the subsequent spectrophotometric method for the catalytic determination of cobalt, the Tiron and hydrogen peroxide concentrations were 1.8 x 10(-3) and 3.0 x 10(-4) mol l-1, respectively, and the sample residence time was 300 s as determined by an optimisation process. The proposed method features a linear range from 10 to 200 ng l-1 Co (r > 0.996) with detection and quantification limits of 1.7 and 5.5 ng l-1 Co, respectively. The precision, expressed as RSD, was 2.4% (n = 12) for repeatability and 5.2% (n = 10) for reproducibility and the accuracy of the proposed method was assessed by using certified samples and an alternative technique (ETAAS).  相似文献   

13.
A new high-performance thin-layer chromatography/electrospray ionization mass spectrometry (HPTLC/ESI-MS) method for the quantification of caffeine in pharmaceutical and energy drink samples was developed using stable isotope dilution analysis (SIDA). After sample preparation, samples and caffeine standard were applied on silica gel 60 F254 HPTLC plates and over-spotted with caffeine-d3 used for correction of the plunger positioning. After chromatography, densitometric detection was performed by UV absorption at 274 nm. The bands were then eluted by means of a plunger-based extractor into the ESI interface of a single-quadrupole mass spectrometer. For quantification by MS the [M+H]+ ions of caffeine and caffeine-d3 were recorded in the positive ion single ion monitoring (SIM) mode at m/z 195 and 198, respectively. The calibration showed a linear regression with a determination coefficient (R2) of 0.9998. The repeatability (RSD, n=6) in matrix was相似文献   

14.
In this paper,a simple method based on ion chromatography(IC) with conductivity detection was developed for the determination of iminodiacetic acid(IDA) in the herbicide of glyphosate.Under optimized chromatographic conditions,good linear relationship,sensitivity and reproducibility were obtained.The detection limit(LOD) for IDA obtained by injecting 25 μL of sample was 31.8 μg/L(S/N = 3).Relative standard deviation(RSD) of repeated analysis for the peak areas was less than 1.53%(n = 6).A spiking study was performed with satisfactory recoveries between 92.8%and 103.6%.It was confirmed that this method could be applied in glyphosate products.  相似文献   

15.
A method has been developed for the determination of residues of glyphosate and its major metabolite, aminomethylphosphonic acid, in stem tissues of blueberries and raspberries. This method involves extraction with water, removal of pigments by charcoal treatment followed by column chromatography using a cation-exchange resin for removal of sugar, a single-step derivatization reaction, and quantification by gas chromatography with a nitrogen-phosphorus detector. Limits of detection for glyphosate and its metabolite were 0.03 and 0.01 mg kg?1, respectively, for both blueberry and raspberry stems.  相似文献   

16.
We have developed a simple, highly sensitive and fast assay method for determining glyphosate and its major metabolite, (aminomethyl)phosphonic acid (AMPA), in serum by high-performance liquid chromatography with ultraviolet detection. Both compounds were successfully extracted with an anion-exchange resin column and allowed to react with p-toluenesulphonyl chloride. The detection limits were 0.3 microgram/ml for glyphosate and 0.2 microgram/ml for AMPA. Recoveries of glyphosate and AMPA spiked to serum were ca. 75% and ca. 88%, respectively. We are convinced that this procedure, in practice, allows medical examiners to analyse both compounds in the serum of poisoned patients within a short time.  相似文献   

17.
An instrumental planar chromatographic (HPTLC) method for quantification of carbamazepine in human serum was developed using liquid‐liquid extraction with dichloromethane, fluorescence activation with perchloric acid 60%/ethanol/water (1:1:1, v/v) and fluorescence detection. Planar chromatographic separation was performed on precoated silica gel F254 HPTLC plates using a mixture of ethyl acetate/toluene/methanol/acetic acid glacial (5:4:0.5:0.5, v/v) as mobile phase. Densitometric detection was done at 366 nm. The method was validated for linearity, precision and accuracy. Linear calibration curves in the range of 3 and 20 ng/μL showed correlation coefficient of 0.998. The intra‐assay and inter‐assay precision, expressed as the RSD, were in the range of 0.41–1.24% (n = 3) and 2.17–3.17% (n = 9), respectively. The LOD was 0.19 ng, and the LOQ was 0.57 ng. Accuracy, calculated as percentage recovery, was between 98.98 and 101.96%, with a RSD not higher than 1.52%. The method was selective for the active principle tested. In conclusion, the method is useful for quantitative determination of carbamazepine in human serum.  相似文献   

18.
A pre-column derivatization high-performance liquid chromatographic method for glyphosate analysis has been developed. Derivatization of glyphosate was performed with 4-chloro-3,5-dinitrobenzotrifluoride (CNBF). In pH 9.5 H3BO3-Na2B4O7 media, the reaction of glyphosate with CNBF completed at 60 °C for 30 min. The labeled glyphosate was separated on a Kromasil C18 column (250 mm × 4.6 mm, 5 μm) at room temperature and UV detection was applied at 360 nm. The separation of labeled glyphosate was achieved within 15 min by gradient elution mode. Compared to other pre-column derivatization, this derivatization was performed more mildly, the derivative was more stable, and the detection limits of a few reagents were higher than CNBF, except 9-fluorenylmethyl chloroformate (FMOC-Cl) using fluorescence and mass spectrometry, however, this reagent avoid to be removed after derivatization like FMOC-Cl. The detection limit of glyphosate was 0.009 mg L−1 (S/N = 3) without preconcentration and reach MRL, which is set at the level of 0.1 mg L−1 in China. The method linearity correlation coefficient was 0.9999, in concentrations ranging from 0.3 to 48.5 mg L−1. The proposed method has been applied to the quantitative determination of glyphosate in environmental water with recoveries of 91.80-100.20% and R.S.D. of 2.27-6.80, depending on the sample investigated.  相似文献   

19.
A rapid and sensitive reversed-phase high performance liquid chromatographic method has been developed for the determination of metoclopramide in serum. The assay was performed after single extraction with ethyl ether using methyl parahydroxybenzoate as internal standard. Chromatographic separations were performed on C(18) stationary phase with a mobile phase composed of methanol-phosphate buffer pH 3 (30:70 v/v). Analytes were detected electrochemically. The quantification limit for metoclopramide in serum was 2 ng mL(-1). Linearity of the method was confirmed in the range of 5-120 ng mL(-1) (correlation coefficient 0.9998). Within-day relative standard deviations (RSDs) ranged from 0.3 to 5.5% and between-day RSDs from 0.8 to 6.0%. The analytical method was successfully applied for the determination of pharmacokinetic parameters after ingestion of 10 mg dose of metoclopramide. Studies were performed on 18 healthy volunteers of both sexes.  相似文献   

20.
A method was developed for separation and quantitative determination of oenothein B (OeB) and quercetin glucuronide (QG) in aqueous extract of Epilobii angustifolii herba by HPTLC-densitometry. The analyses were performed on HPTLC RP-18 WF(254) plates with 25% MeCN in water (+50mM H(3)PO(4)) as the mobile phase (distance of 8 cm) for OeB quantification and then with acetonitrile (distance of 4 cm) for QG quantification. OeB and QG were determined by densitometry at 270 and 350 nm, respectively. Their amounts were calculated using the regression equations of the calibration curves which were linear in a range of 1.14-2.28 microg spot(-1) for OeB and of 0.0768-0.6912 microg spot(-1) for QG. The amounts of OeB and QG in aqueous extract of Epilobii angustifolii herba measured by the method developed were 152.46+/-4.92 and 22.07+/-1.38 mg g(-1), respectively. The method was found to be relatively simple, specific, precise and accurate for the quality control of Epilobium angustifolium extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号